Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.616
Filter
1.
Brain Res ; 1846: 149248, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313168

ABSTRACT

Central nervous system lesions often cause permanent motility defects in mammals since the injured neurons cannot regenerate. In contrast, lower vertebrates like zebrafish can regenerate lost neurons and restore motor function. This study investigates the efficacy of SC79, a pan-Akt activator, and A674563, a selective Akt1 inhibitor, as potential therapeutic agents for promoting spinal cord recovery post-injury. Spinal cord injury was induced in zebrafish larvae, and the effects of SC79 and A674563 on neuronal and glial regeneration were examined. SC79 promoted neuronal regeneration without affecting glial bridging, while A674563 induced glial bridging but reduced neuronal regeneration. The combination of SC79 and A674563 induced both glial bridging and neuronal regeneration. Optomotor response tests revealed improved motor function recovery with the combined treatment compared to individual treatments. Additionally, these chemical treatments altered the expression of 12 Akt downstream transcriptional target genes, affirming that the combination treatment preferentially regulates spinal cord regeneration through its action on Akt signaling. These findings highlight the complex interplay of Akt signaling pathways in spinal cord regeneration and suggest potential therapeutic strategies for enhancing functional recovery in spinal cord injury patients.

2.
Sci Total Environ ; 953: 176014, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39241881

ABSTRACT

BACKGROUND: While ambient air pollution has been associated with fetal growth in singletons, its correlation among twins is not well-established due to limited research in this area. METHODS: The effects of exposure to PM2.5 particulate matter and its main components during pregnancy on birth weight and the incidence of large for gestational age (LGA) were investigated in 6177 twins born after in vitro fertilization at the Center for Reproductive Medicine of Shanghai Ninth People's Hospital (Shanghai, China) between 2007 and 2021. Other birth weight-related outcomes included macrosomia, low birth weight, very low birth weight, and small for gestational age (SGA). The associations of PM2.5 exposure with birth weight outcomes were analyzed using linear mixed-effect models and random-effect logistic regression models. Distributed lag models were incorporated to estimate the time-varying associations. RESULTS: The findings revealed that an interquartile range (IQR) increase (18 µg/m3) in PM2.5 exposure over the entire pregnancy was associated with a significant increase (57.06 g, 95 % confidence interval [CI]: 30.91, 83.22) in the total birth weight of twins. The effect was more pronounced in larger fetuses (34.93 g, 95 % CI: 21.13, 48.72) compared to smaller fetuses (21.77 g, 95 % CI: 6.94, 36.60) within twin pregnancies. Additionally, an IQR increase in PM2.5 exposure over the entire pregnancy was associated with a 34 % increase in the risk of LGA (95 % CI: 11 %, 63 %). Furthermore, specific chemical components of PM2.5, such as sulfate (SO42-), exhibited effect estimates comparable to the PM2.5 total mass. CONCLUSION: Overall, the findings indicate that exposures to PM2.5 and its specific components are associated with fetal overgrowth in twins.


Subject(s)
Air Pollutants , Birth Weight , Fertilization in Vitro , Fetal Development , Maternal Exposure , Particulate Matter , Female , Humans , Maternal Exposure/statistics & numerical data , Pregnancy , China , Fetal Development/drug effects , Air Pollutants/toxicity , Birth Weight/drug effects , Adult , Twins , Air Pollution/statistics & numerical data , Infant, Newborn
3.
Adv Mater ; : e2406296, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233551

ABSTRACT

Li-TFSI doped spiro-OMeTAD is widely recognized as a beneficial hole transport layer (HTL) in perovskite solar cells (PSCs), contributing to high device efficiencies. However, the uncontrolled migration of lithium ions (Li+) during device operation has impeded its broad adoption in scalable and stable photovoltaic modules. Herein, an additive strategy is proposed by employing ferrocenium hexafluorophosphate (FcPF6) as a relay medium to enhance the hole extraction capability of the spiro-OMeTAD via the instant oxidation function. Besides, the novel Fc-Li interaction effectively restricts the movement of Li+. Simultaneously, the dissociative hexafluorophosphate group is cleverly exploited to regulate the unstable iodide species on the perovskite surface, further inhibiting the formation of migration channels and stabilizing the interfaces. This modification leads to power conversion efficiencies (PCEs) reaching 22.13% and 20.27% in 36 cm2 (active area of 18 cm2) and 100 cm2 (active area of 56 cm2) perovskite solar modules (PSMs), respectively, with exceptional operational stability obtained for over 1000 h under the ISOS-L-1 procedure. The novel FcPF6-based engineering approach is pivotal for advancing the industrialization of PSCs, particularly those relying on high-performance spiro-OMeTAD- based HTLs.

4.
Adv Mater ; : e2410255, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223930

ABSTRACT

Efficient and stable red perovskite light-emitting diodes (PeLEDs) demonstrate promising potential in high-definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long-term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well-aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half-lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m-2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.

5.
Int Immunopharmacol ; 142(Pt A): 113072, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241514

ABSTRACT

BACKGROUND: Aberrant differentiation of Th17 cells has been identified as a critical factor in the development of rheumatoid arthritis (RA). BLIMP1 plays a key role in regulating plasma cell differentiation, T helper cell differentiation and Treg cell differentiation. Treatment with exosome injection or bone marrow mesenchymal stem cell (BMSC) transplantation reduce joint damage in RA. But the precise regulatory mechanisms remain unclear. METHODS: We injected BMSC-derived exosomes into RA mice, and then performed histological analysis on mouse ankle joints. We cultured CD4+ T cells in vitro, then added exosomes with or without si-TUG1 and induced the differentiation of Th17 cells and Treg cells, and then we used flow cytometry to detect the ratio of Th17 cells and Treg cells. Furthermore, we injected exosomes into sh-NC or sh-BLIMP1-treated RA mice, and then performed histological analysis on the ankle joints. RESULT: The results of our study demonstrate that exosome treatment decreased the proportion of differentiated Th17 cells, while increasing the proportion of Treg cells. And we observed that the Exo si-TUG1 group had an increased proportion of Th17 cells and a decreased proportion of Treg cells. We observed an increase in BLIMP1 expression in both the peripheral blood of mice and in CD4+ T cells cultured in vitro in the Exo group. Conversely, the Exo si-TUG1 group showed a decrease in BLIMP1 expression. Notably, inhibiting BLIMP1 expression led to the reversal of the therapeutic effects of exosomes. CONCLUSION: Our findings suggest that BMSC-derived exosomes promote the expression of BLIMP1 through Lnc TUG1-carrying exosomes, which may modulate the balance between Th17 cells and Treg cells. This mechanism ultimately alleviates damage caused by RA, suggesting that BMSC-derived exosomes enriched in Lnc TUG1 hold promise as a potential therapeutic approach for treating RA.

6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(8): 892-896, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39238417

ABSTRACT

Sepsis-associated encephalopathy (SAE) is the most common neurological complication of sepsis, with an incidence of up to 70% in sepsis, and contributes to the increased mortality and disability in sepsis. To date, the exact pathogenesis of SAE is not clear. Most of current researches indicated that blood-brain barrier (BBB) dysfunction, active neuroinflammation, glial cell over activation as well as cerebral microcirculation dysfunction contributed to the pathophysiology of SAE. BBB, as a complex cellular structure between the central nervous system and the peripheral system, strictly controls the entrance and discharge of substances and plays an important role in maintaining the balance between biochemical system and immune system of central system. During the progress of sepsis, inflammatory cytokines and reactive oxygen species resulting from peripheral system directly or indirectly resulted in the damage to the integrity and structure of BBB, which helped above species easily enter into the central system. Above these damages caused glial cell activation (microglia and astrocyte), the imbalance of neurotransmitters, mitochondrial dysfunction and neural apoptosis, which also reversely contributed to the damage to the integrity and permeability of BBB via decreasing the expression of tight junctional protein between cells. Therefore, this review focuses on the structural and functional changes of BBB in SAE, and how these changes lead to the development of SAE, in order to seek a BBB-targeted therapy for SAE.


Subject(s)
Blood-Brain Barrier , Sepsis-Associated Encephalopathy , Sepsis , Humans , Sepsis-Associated Encephalopathy/physiopathology , Sepsis/complications , Sepsis/physiopathology , Animals , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Astrocytes/metabolism
7.
BMC Public Health ; 24(1): 2376, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223471

ABSTRACT

BACKGROUND: The use of antioxidant-rich foods to treat female infertility has received significant attention in recent years. The aim of this study was to investigate the potential correlation between the composite dietary antioxidant index (CDAI) and female infertility. METHODS: The participants in the cross-sectional data were women between the ages of 20 and 45 who had complete CDAI-related data and infertility information, which were taken from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2020. The independent association between CDAI and infertility was investigated using multivariate logistic regression analysis. Trends between the two variables were examined using smoothed curve fitting, and subgroup analysis and interaction tests were conducted. RESULTS: The prevalence of infertility was 12.57% of the 3,259 participants included in the study; individuals in higher CDAI quartiles tended to have a lower percentage of infertility. The risk of infertility was 44% lower among individuals in the highest quartile of the CDAI compared to those in the lowest quartile (OR = 0.56, 95%CI: 0.36-0.85, P = 0.0072), and the test for trend was also significant (P for trend = 0.0235). Smoothed curve fitting showed a negative non-linear relationship between CDAI and infertility. Subgroup analysis and interaction tests showed that there was an interaction of BMI in the relationship between CDAI and infertility risk (P for interaction = 0.0497) and that education, PIR, marital status, smoking status, hypertension, diabetes, age at menarche, ever having been treated for pelvic infection, ever having used female hormones, and ever been pregnant had no significant dependence on this negative association (all P for interaction > 0.05). CONCLUSION: There was a negative non-linear correlation between CDAI and infertility among reproductive-aged women in the US. The risk of infertility may be reduced by increasing the intake of antioxidant-rich foods.


Subject(s)
Antioxidants , Diet , Infertility, Female , Nutrition Surveys , Humans , Female , Adult , Cross-Sectional Studies , Antioxidants/analysis , Infertility, Female/epidemiology , Diet/statistics & numerical data , Young Adult , Middle Aged , United States/epidemiology , Prevalence
8.
Sensors (Basel) ; 24(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39275386

ABSTRACT

For automated quayside container cranes, accurate measurement of the three-dimensional positioning and attitude of the container spreader is crucial for the safe and efficient transfer of containers. This paper proposes a high-precision measurement method for the spreader's three-dimensional position and rotational angles based on a single vertically mounted fixed-focus visual camera. Firstly, an image preprocessing method is proposed for complex port environments. The improved YOLOv5 network, enhanced with an attention mechanism, increases the detection accuracy of the spreader's keypoints and the container lock holes. Combined with image morphological processing methods, the three-dimensional position and rotational angle changes of the spreader are measured. Compared to traditional detection methods, the single-camera-based method for three-dimensional positioning and attitude measurement of the spreader employed in this paper achieves higher detection accuracy for spreader keypoints and lock holes in experiments and improves the operational speed of single operations in actual tests, making it a feasible measurement approach.

9.
Sensors (Basel) ; 24(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39275706

ABSTRACT

Accurately estimating single-axis rotational angle changes is crucial in many high-tech domains. However, traditional angle measurement techniques are often constrained by sensor limitations and environmental interferences, resulting in significant deficiencies in precision and stability. Moreover, current methodologies typically rely on fixed-axis rotation models, leading to substantial discrepancies between measured and actual angles due to axis misalignment. To address these issues, this paper proposes an innovative method for single-axis rotational angle estimation. It introduces a calibration technique for installation errors between inertial measurement units and the overall measurement system, effectively translating dynamic rotational inertial outputs to system enclosure outputs. Subsequently, the method employs triaxial accelerometers combined with zero-velocity detection technology to estimate the rotation axis position. Finally, it delves into analyzing the relationship between quaternion and axis-angle, aimed at reducing noise interference for precise rotational angle estimation. Based on this proposed methodology, a Low-Cost, a High Accuracy Measurement System (HAMS) integrating sensor fusion was designed and implemented. Experimental results demonstrate static measurement errors below ±0.15° and dynamic measurement errors below ±0.5° within a ±180° range.

10.
Comput Biol Chem ; 113: 108212, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39277959

ABSTRACT

Protein lysine crotonylation is an important post-translational modification that regulates various cellular activities. For example, histone crotonylation affects chromatin structure and promotes histone replacement. Identification and understanding of lysine crotonylation sites is crucial in the field of protein research. However, due to the increasing amount of non-histone crotonylation sites, existing classifiers based on traditional machine learning may encounter performance limitations. In order to address this problem, a novel deep learning-based model for identifying crotonylation sites is presented in this study, given the unique advantages of deep learning techniques for sequence data analysis. In this study, an MLP-Attention-based model was developed for the identification of crotonylation sites. Firstly, three feature extraction strategies, namely Amino Acid Composition, K-mer, and Distance-based residue features extraction strategy, were used to encode crotonylated and non-crotonylated sequences. Then, in order to balance the training dataset, the FCM-GRNN undersampling algorithm combining fuzzy clustering and generalized neural network approaches was introduced. Finally, to improve the effectiveness of crotonylation site identification, we explored various classification algorithms, and based on the relevant experimental performance comparisons, the multilayer perceptron (MLP) combined with the superimposed self-attention mechanism was finally selected to construct the prediction model ILYCROsite. The results obtained from independent testing and five-fold cross-validation demonstrated that the model proposed in this study, ILYCROsite, had excellent performance. Notably, on the independent test set, ILYCROsite achieves an AUC value of 87.93 %, which is significantly better than the existing state-of-the-art models. In addition, SHAP (Shapley Additive exPlanations) values were used to analyze the importance of features and their impact on model predictions. Meanwhile, in order to facilitate researchers to use the prediction model constructed in this study, we developed a prediction program to identify the crotonylation sites in a given protein sequence. The data and code for this program are available at: https://github.com/wmqskr/ILYCROsite.

11.
Mol Immunol ; 175: 63-73, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305849

ABSTRACT

BACKGROUND: Epithelial-mesenchymal transition (EMT) is involved in local tissue remodeling in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the function of Piezo1 in EMT process remains unclear. This study aimed to characterize potential roles of Piezo1 in EMT process in CRSwNP. METHODS: Overall, 22 nasal polyp (NP) tissues from patients with CRSwNP and 20 middle turbinate from healthy individuals were obtained during surgery. The expression of Piezo1, E-cadherin, vimentin, and α-smooth muscle actin (α-SMA) was measured by using western blot (Wb) in NP tissues and primary human nasal epithelial cells (pHNECs) and the location and level were assessed by immunofluorescence staining. BEAS-2B cells were stimulated with transforming growth factor (TGF)-ß1 to induce EMT in vitro model and examined using qRT-PCR. BEAS-2B cells were treated with Yoda1 and RuR to calculate protein level by Wb analysis. Yoda1 and RuR treated NP murine model was evaluated by H&E (hematoxylin-eosin) staining and immunohistochemistry. RESULTS: Compared with the control group, E-cadherin was decreased while the level of Piezo1, vimentin, and α-SMA was increased in NP group. Piezo1, vimentin, and α-SMA were upregulated in TGF-ß1-induced BEAS-2B cells. Yoda1 inhibited E-cadherin expression and promoted Piezo1 and the aforementioned mesenchymal markers, whereas RuR showed contrary results. The results from the murine model treated with Yoda1 and RuR were consistent with those results in the EMT model in vitro. CONCLUSION: Piezo1 is linked with EMT process in CRSwNP and the activation of Piezo1 exacerbates EMT process of nasal polyps.

12.
Arch Public Health ; 82(1): 162, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294655

ABSTRACT

BACKGROUND: Sarcopenia is a musculoskeletal disease characterized by a significant reduction in muscle mass, strength, and performance. As it mostly affects older adults, it is often recognized as a disease of old age. However, sleep is also closely related to its development. Hence, it becomes critical to explore the relationship between sleep and sarcopenia in populations under 60 years of age to develop strategies for preventing sarcopenia. We here aim to explore the specific association between sleep duration and sleep quality with pre-sarcopenia in the non-elderly population using large population samples. METHODS: This study involved 7,187 participants aged 20-59 years from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2014. Pre-sarcopenia is defined based on the appendicular skeletal muscle mass (ASM) adjusted for body mass index (BMI). Self-reported sleep duration was categorized into three groups: <6 h (short sleep), 6-8 h (normal sleep), and > 8 h (long sleep). Sleep quality was assessed based on the Sleep Disorder and Trouble Sleeping Questionnaire. Univariate analysis and multivariate logistic regression were used to examine the relationship between sleep duration and sleep quality with pre-sarcopenia. RESULTS: Sleep quality was significantly linked with the risk of pre-sarcopenia (OR 1.72, 95% CI 1.36-2.18, P < 0.01). Longer or shorter sleep duration did not affect the risk of pre-sarcopenia, in contrast to normal sleep duration. Subgroup analysis demonstrated a more pronounced association in individuals who are > 40 years old (P < 0.01), non-Hispanic (P ≤ 0.01), overweight (P < 0.01), have a higher income (P < 0.01), and are more educated (P ≤ 0.01). Moreover, this association was noted in populations with or without smoking (P < 0.01) and alcohol consumption (P < 0.01), hypertension (P < 0.01) and diabetes (P ≤ 0.02). CONCLUSION: Sleep quality is associated with an increased risk of pre-sarcopenia, while sleep duration is not in the population aged 20-59 years. Further prospective cohort studies with a large sample size are needed to determine causality and develop effective interventions for preventing sarcopenia in the population aged 20-59 years.

13.
Adv Mater ; : e2412007, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308205

ABSTRACT

The structural symmetry of solids plays an important role in defining their linear and nonlinear optical properties. The quest for versatile, cost-effective, large-scale, and defect-free approaches and materials platforms for tailoring structural and optical properties on demand is underway since decades. A self-assembled spherulite material comprised of synthesized molecules with large dipole moments aligned azimuthally, forming a vortex polarity with spontaneously broken symmetry, is experimentally demonstrated. This unique self-assembled structure enables new linear and nonlinear light-matter interactions, including generating optical vortex beams with complex spin states and on-demand topological charges at the fundamental, doubled, and tripled frequencies. This work will likely enable numerous applications in areas such as high-dimensional quantum information processing with large capacity and high security, spatiotemporal optical vortices, and a novel optical manipulation and trapping platform.

14.
Adv Mater ; : e2406706, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308291

ABSTRACT

Metal halide perovskites, a cost-effective class of semiconductos, hold great promise for display technologies that demand high-efficiency, color-pure light-emitting diodes (LEDs). Early research on three-dimensional (3D) perovskites showed low radiative efficiencies due to modest exciton binding energies. To inprove luminescence, reducing dimensionality or grain size has been a common approach. However, dividing the perovskite lattice into smaller units may hinder carrier transport, compromising electrical performance. Moreover, the increased surface area introduce additional surface trap states, leading to greater non-radiative recombination. Here, an ions-induced growth method is employed to assembe lattice-anchored perovskite nanocomposites for efficient LEDs with high color purity. This approach enables the nanocomposite thin films, composed of 3D CsPbBr3 and its variant of zero-dimensional (0D) Cs4PbBr6, to feature significant low trap-assisted nonradiative recombination, enhanced light out-coupling with a corrugated surface, and well-balanced charge carrier transport. Based on the resultant 3D/0D perovskite nanocomposites, the perovskite LEDs (PeLEDs) achieving an remarkable external quantum efficiency of 31.0% at the emission peak of 521 nm with a narrow full width at half-maximum of only 18 nm. This sets a new benchmark for color purity in high performance PeLED research, highlighting the significant advantage of this approach.

15.
Phytomedicine ; 135: 156024, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39341125

ABSTRACT

BACKGROUND: The development of cancer is accompanied by metabolic reprogramming, and the liver serves as a central hub for lipid transportation. Apigenin, a plant-derived flavonoid, demonstrates potent anticancer properties across various cancer types and exhibits promising potential as a therapeutic agent for cancer treatment. However, there are limited studies focusing on the downstream targets of apigenin. Moreover, there are few reports on the impact of apigenin in lipid metabolism within liver cancer cells. PURPOSE: The objective is to elucidate the metabolic mechanism underlying the inhibitory effect of apigenin on liver cancer progression, search for downstream targets and provide reliable data support for the clinical trials of apigenin. METHODS: Anticancer effects of apigenin were detected at cellular and molecular levels in vitro, and downstream targets of apigenin, especially metabolic pathway genes, were analyzed by transcriptome. Next, the downstream target of apigenin was verified and the biological function of the downstream target was examined. Finally, the downstream target of apigenin was further verified by restoring target gene expression. RESULTS: Cellular molecular experiments showed that Apigenin inhibited the proliferation, migration, invasion and lipid metabolism of hepatocellular carcinoma (HCC) cells. Transcriptome analysis showed apigenin widely regulates histone demethylase, particularly histone H3K4 lysine demethylase 1A (KDM1A). Apigenin treatment inhibited the expression of KDM1A protein and mRNA levels in liver cancer cells, molecular docking predicted the interaction between apigenin and KDM1A. Furthermore, downregulation KDM1A inhibited the proliferation and lipid metabolism of HCC cells, in the same way, overexpressing KDM1A promoted proliferation of HCC cells. Finally, restoring KDM1A expression partially attenuated the effects of apigenin on lipid metabolism in HCC cells. CONCLUSION: In conclusion, our study provides compelling evidence that apigenin inhibits liver cancer progression and elucidates its mechanism of action in regulating lipid metabolism. Specifically, we find that apigenin suppresses the progression of HCC cells by downregulating genes involved in lipid metabolism. Additionally, our results indicate that KDM1A acts as a downstream target of apigenin in the inhibition of lipid metabolism in HCC. These findings offer experimental support for the potential use of apigenin as a therapeutic agent for liver cancer, highlighting its relevance in future clinical applications.

16.
J Hazard Mater ; 479: 135579, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39216247

ABSTRACT

Exposure to fine particulate matter (PM2.5) poses numerous health risks, with oxidative potential (OP) serving as a critical marker of its toxicity. Synthetic phenolic antioxidants (SPAs) and bisphenols (BPs) influence reactive oxygen species (ROS) levels in PM2.5, and exposure to these compounds induces oxidative stress in organisms, thereby potentially affecting the OP of PM2.5. We detected 26 phenols (including 12 SPAs, 5 transformation products (TPs), and 9 BPs) in PM2.5 sample collected from October 2018 to September 2021 in Wuhan, China. Among them, 19 substances were detected at a detection frequency greater than 50 % in PM2.5 sample. AO 2246 and BHT were the main components of SPAs, and BHT-Q and BPA had the highest concentrations in TPs and BPs, respectively. PM2.5 mass concentrations and phenolic levels were higher in winter and autumn. Substances within groups were strongly correlated, suggesting the same or similar source of exposure. This finding aid in more precise pollution source identification and is crucial for comprehensively evaluating their combined health effects. Furthermore, we determined the OP of PM2.5 and found that BPs were related to increased OP and ROS. This suggests that the toxicity of PM2.5 is influenced not only by its concentration but also by its chemical composition, with BPs potentially enhancing its toxic effects. These factors should be fully considered when assessing the health impacts of PM2.5.


Subject(s)
Air Pollutants , Particulate Matter , Phenols , Seasons , Particulate Matter/analysis , Particulate Matter/toxicity , Phenols/analysis , Phenols/toxicity , Air Pollutants/analysis , Air Pollutants/toxicity , China , Antioxidants/analysis , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Environmental Monitoring , Oxidative Stress/drug effects , Oxidation-Reduction
17.
Jt Dis Relat Surg ; 35(3): 491-503, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-39189557

ABSTRACT

OBJECTIVES: The study aimed to compare the efficacy and safety of unilateral versus bilateral percutaneous kyphoplasty (PKP) in treating osteoporotic vertebral compression fractures. MATERIALS AND METHODS: Adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, three English-language databases were systematically reviewed: PubMed, Web of Science, and the National Library of Medicine. The search was conducted between their inception and January 1, 2023. Studies that were replications or that used regression analysis were excluded. Randomized controlled trials and cohort studies that met the criteria were included, and a meta-analysis was performed. RESULTS: The mean follow-up duration was 17.9±9.7 months for the unilateral group and 18.4±8.3 months for the bilateral group. Eight randomized controlled trials and four cohort studies were included, comprising a total of 1,391 patients (499 males, 697 females; 195 cases did not report sex; mean age: 70.9 years; range, 45 to 82 years). Of these patients, 710 underwent the unilateral surgical approach and 681 the bilateral approach. The meta-analysis revealed that the long-term VAS was marginally higher in the unilateral PKP group (mean difference [MD]=0.09; 95% confidence interval [CI]: 0.06-0.13; p<0.001). The unilateral group also demonstrated a greater recovery rate in the postoperative kyphosis angle (MD=2.27; 95% CI: 0.67-3.87; p=0.006), shorter operation duration (MD=18.56 min; 95% CI: 8.96-28.17; p<0.001), and a lower bone cement dosage (MD=1.20 mL; 95% CI: 0.39-2.01; p=0.004). CONCLUSION: Unilateral PKP appears equally effective as bilateral PKP for treating osteoporotic vertebral compression fractures but with advantages in terms of procedure time, cement use, and pain reduction.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Spinal Fractures , Aged , Female , Humans , Fractures, Compression/surgery , Kyphoplasty/adverse effects , Kyphoplasty/methods , Osteoporotic Fractures/surgery , Spinal Fractures/surgery , Treatment Outcome , Male , Middle Aged , Aged, 80 and over
18.
Bioinform Adv ; 4(1): vbae099, 2024.
Article in English | MEDLINE | ID: mdl-39143982

ABSTRACT

Summary: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation: Not applicable.

19.
Mov Disord ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149795

ABSTRACT

BACKGROUND: Progressive supranuclear palsy (PSP) is largely a sporadic disease with few reported familial cases. Genome-wide association studies (GWAS) in sporadic PSP in Caucasian populations have identified MAPT as the most commonly associated genetic risk locus with the strongest effect size. At present there are limited data on genetic factors associated with PSP in Asian populations. OBJECTIVES: Our goal was to investigate the genetic factors associated with PSP in Southeast Asian PSP patients. METHODS: Next-generation sequencing (whole-exome, whole-genome and targeted sequencing) was performed in two Asian cohorts, comprising 177 PSP patients. RESULTS: We identified 17 pathogenic or likely pathogenic variants in 16 PSP patients (9%), eight of which were novel. The most common relevant genetic variants identified were in MAPT, GBA1, OPTN, SYNJ1, and SQSTM1. Other variants detected were in TBK1, PRNP, and ABCA7-genes that have been implicated in other neurodegenerative diseases. Eighteen patients had a positive family history, of whom two carried pathogenic MAPT variants, and one carried a likely pathogenic GBA1 variant. None of the patients had expanded repeats in C9orf72. Furthermore, we found 16 different variants of uncertain significance in 21 PSP patients in PSEN2, ABCA7, SMPD1, MAPT, ATP13A2, OPTN, SQSTM1, CYLD, and BSN. CONCLUSIONS: The genetic findings in our PSP cohorts appear to be somewhat distinct from those in Western populations, and also suggest an overlap of the genetic architecture between PSP and other neurodegenerative diseases. Further functional studies and validation in independent Asian cohorts will be useful for improving our understanding of PSP genetics and guiding genetic screening strategies in these populations. © 2024 International Parkinson and Movement Disorder Society.

20.
Hum Genet ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110250

ABSTRACT

This paper presents an evaluation of predictions submitted for the "HMBS" challenge, a component of the sixth round of the Critical Assessment of Genome Interpretation held in 2021. The challenge required participants to predict the effects of missense variants of the human HMBS gene on yeast growth. The HMBS enzyme, critical for the biosynthesis of heme in eukaryotic cells, is highly conserved among eukaryotes. Despite the application of a variety of algorithms and methods, the performance of predictors was relatively similar, with Kendall's tau correlation coefficients between predictions and experimental scores around 0.3 for a majority of submissions. Notably, the median correlation (≥ 0.34) observed among these predictors, especially the top predictions from different groups, was greater than the correlation observed between their predictions and the actual experimental results. Most predictors were moderately successful in distinguishing between deleterious and benign variants, as evidenced by an area under the receiver operating characteristic (ROC) curve (AUC) of approximately 0.7 respectively. Compared with the recent two rounds of CAGI competitions, we noticed more predictors outperformed the baseline predictor, which is solely based on the amino acid frequencies. Nevertheless, the overall accuracy of predictions is still far short of positive control, which is derived from experimental scores, indicating the necessity for considerable improvements in the field. The most inaccurately predicted variants in this round were associated with the insertion loop, which is absent in many orthologs, suggesting the predictors still heavily rely on the information from multiple sequence alignment.

SELECTION OF CITATIONS
SEARCH DETAIL