Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Cardiovasc Pharmacol ; 84(2): 239-249, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39115722

ABSTRACT

ABSTRACT: The study aimed to investigate the pathogenesis of sepsis-induced cardiomyopathy, a leading cause of mortality in septic patients. Transcriptome data from cecal ligation and puncture-induced septic mice were analyzed at different time points (24, 48, and 72 hours) using GSE171546 data. Through weighted gene co-expression network analysis, time series, and differential expression analyses, key time-series differentially expressed genes were identified. In addition, single-cell sequencing data (GSE207363) were used for both differential and pseudotime analyses to pinpoint differentially expressed genes specific to endothelial cells. The study highlighted Spock2, S100a9, S100a8, and Xdh as differential genes specific to endothelial cells in a time-dependent manner. Immunofluorescence validation confirmed the increased expression of SPOCK2 in the endothelial cells of cecal ligation and puncture-induced septic mice. Furthermore, in vitrostudies showed that deletion of Spock2 significantly increased LPS-induced apoptosis and necrosis in human umbilical vein endothelial cells. In conclusion, SPOCK2 expression was increased in septic cardiac endothelial cells and LPS-induced human umbilical vein endothelial cells and may play a protective role.


Subject(s)
Apoptosis , Cardiomyopathies , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Sepsis , Animals , Sepsis/metabolism , Sepsis/genetics , Sepsis/complications , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Male , Time Factors , Transcriptome , Cells, Cultured , Mice, Knockout , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Regulatory Networks , Necrosis , Databases, Genetic , Signal Transduction , Gene Expression Profiling , Gene Expression Regulation , Lipopolysaccharides/pharmacology , Up-Regulation , Single-Cell Analysis , Mice , Calgranulin B
2.
J Colloid Interface Sci ; 678(Pt A): 240-250, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39197367

ABSTRACT

Layered double hydroxide (LDH)-carbon composites effectively mitigate the inherent issues of agglomeration and poor conductivity in LDH. However, the weak binding energy and insufficient charge transfer capability between LDH and carbon substrate significantly compromise the active substance loading, cyclic stability and practical capacity of the composites. Herein, N/O co-doping porous carbon nanofibers (NOPCNFs) are first prepared by blending diminutive zinc imidazolate framework-8 nanoparticles with polyacrylonitrile for electrospinning, and then densely packed NiCo LDH nanosheets are homogeneously anchored on NOPCNFs to form NiCo LDH@NOPCNFs heterostructure via a hydrothermal method. The experimental findings and density functional theory calculation results indicate that N/O atoms exhibit robust binding forces with metal atoms through enhanced electrostatic adsorption and p-d covalent hybridization, which facilitates the nucleation and development of NiCo LDH on carbon nanofibers. Meanwhile, these heteroatoms also serve as the bridge for electron transfer from NiCo LDH to NOPCNF, leading to a strong interfacial electric field, thus accelerating charge transfer behaviors. Benefitting from the synergistic interaction between NiCo LDH and NOPCNF, the obtained NiCo LDH@NOPCNFs demonstrate an elevated mass loading of active substance (55 wt%), an impressive specific capacitance of 1340 F/g at 1 A/g (based on the mass of NiCo LDH, 2463 F/g), and good cyclic durability for 5000 cycles. Moreover, an all-solid-state asymmetric supercapacitor using NOPCNFs and NiCo LDH@NOPCNFs shows promising practical application prospects. This work gives insights into the important influence of heteroatom doping in carbon, and provides a feasible approach for the efficient integration of electroactive and carbon material.

3.
bioRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39005310

ABSTRACT

A long-standing observation is that in fast-growing cells, respiration rate declines with increasing growth rate and is compensated by an increase in fermentation, despite respiration being more efficient than fermentation. This apparent preference for fermentation even in the presence of oxygen is known as aerobic glycolysis, and occurs in bacteria, yeast, and cancer cells. Considerable work has focused on understanding the potential benefits that might justify this seemingly wasteful metabolic strategy, but its mechanistic basis remains unclear. Here we show that aerobic glycolysis results from the saturation of mitochondrial respiration and the decoupling of mitochondrial biogenesis from the production of other cellular components. Respiration rate is insensitive to acute perturbations of cellular energetic demands or nutrient supplies, and is explained simply by the amount of mitochondria per cell. Mitochondria accumulate at a nearly constant rate across different growth conditions, resulting in mitochondrial amount being largely determined by cell division time. In contrast, glucose uptake rate is not saturated, and is accurately predicted by the abundances and affinities of glucose transporters. Combining these models of glucose uptake and respiration provides a quantitative, mechanistic explanation for aerobic glycolysis. The robustness of specific respiration rate and mitochondrial biogenesis, paired with the flexibility of other bioenergetic and biosynthetic fluxes, may play a broad role in shaping eukaryotic cell metabolism.

4.
Rev Cardiovasc Med ; 25(2): 62, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39077361

ABSTRACT

Background: The cardiotoxicity of doxorubicin (DOX) limits its use in cancer treatment. To address this limitation, we developed a novel animal model that uses beagle dogs to investigate DOX-induced cardiac disorders. Unfortunately, the lack of effective cardioprotection strategies against DOX-induced cardiotoxicity poses a significant challenge. To establish a canine model for low-mortality DOX-induced cardiac dysfunction and explore the relationship between inflammatory reprogramming and DOX-related cardiotoxicity. Methods: Twenty male beagle dogs aged two years were randomly assigned into the DOX (N = 10) and control (CON) (N = 10) groups. DOX was infused (1.5 mg/kg) every two weeks until doses cumulatively reached 12 mg/kg. Serum biomarkers and myocardial pathology were evaluated, while real-time fluorescence-based quantitative polymerase chain reaction (RTFQ-PCR), two- and three-dimensional echocardiography (2DE and RT3DE), functional enrichment, and matrix correlation were also performed. Results: In the DOX group, high-sensitive cardiac troponin T (hs cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were significantly increased. Myocardial pathology indicated early to medium myocardial degeneration via a decreased cardiomyocyte cross-sectional area (CSA). Increased levels of inflammatory gene transcripts (interleukin 6 (IL6), tumor necrosis factor (TNF), transforming growth factor ß (TGF ß ), intercellular adhesion molecule 1 (ICAM1), interleukin 1 (IL1), interleukin 1 ß (IL1 ß ), and interleukin 8 (IL8)), of collagen metabolism and deposition regulatory genes (matrix metalloproteinase (MMP) family and tissue inhibitor of matrix metalloproteinase (TIMP) family), and the natriuretic peptide family (NPS) (natriuretic peptide A, B and C (NPPA, NPPB, and NPPC)) were observed. Strain abnormalities in the right ventricular longitudinal septal strain (RVLSS), right ventricular longitudinal free-wall strain (RVLFS), left ventricular global longitudinal strain (LVGLS), and left ventricular global circumferential strain (LVGCS) were detected at week 28 (vs. week 0 or CON group, p < 0.05, respectively). A significant decline in RVLSS and RVLFS occurred at week 16, which was earlier than in the corresponding left ventricular areas. A significant right ventricular ejection fraction (RVEF) decline was noted at week 16 (vs. week 0, 33.92 ± 3.59% vs. 38.58 ± 3.58%, p < 0.05), which was 12 weeks earlier than for the left ventricular ejection fraction (LVEF), which occurred at week 28 (vs. week 0, 49.02 ± 2.07% vs. 54.26 ± 4.38%, p < 0.01). The right ventricular strain and functional damages correlated stronger with inflammatory reprogramming (most R from 0.60 to 0.90) than the left ones (most R from 0.30 to 0.65), thereby indicating a more pronounced correlation. Conclusions: Inflammatory reprogramming mediated disorders of strain capacity and cardiac function predominantly in the right side of the heart in the newly established DOX-related cardiomyopathy beagle dog model.

5.
Chem Commun (Camb) ; 60(55): 7053-7056, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38899451

ABSTRACT

Self-oxidative degradation photosensitizers capable of bacterial agglutination and membrane insertion were fabricated based on a simple co-assembly strategy, for efficiently killing P. aeruginosa and rapidly deactivating their function post-treatment.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Pseudomonas aeruginosa , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Cell Membrane/drug effects , Cell Membrane/chemistry , Cell Membrane/metabolism , Agglutination/drug effects
6.
Mol Ther ; 32(7): 2176-2189, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734896

ABSTRACT

The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Disease Models, Animal , Neuromuscular Junction , Receptor Protein-Tyrosine Kinases , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Longevity/drug effects , Motor Neurons/metabolism , Motor Neurons/drug effects , Agrin/metabolism , Agrin/genetics , Mice, Transgenic , Antibodies/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics
7.
bioRxiv ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38746096

ABSTRACT

Cells regulate their shape and metabolic activity in response to the mechano-chemical properties of their microenvironment. To elucidate the impact of matrix stiffness and ligand density on the bioenergetics of mesenchymal cells, we developed a nonequilibrium, active chemo-mechanical model that accounts for the mechanical energy of the cell and matrix, chemical energy from ATP hydrolysis, interfacial energy, and mechano-sensitive regulation of stress fiber assembly through signaling. By integrating the kinetics and energetics of these processes, we define the cell "metabolic potential" that, when minimized, provides testable predictions of cell contractility, shape, and ATP consumption. Specifically, we show that the morphology of MDA-MB-231 breast cancer cells in 3D collagen changes from spherical to elongated to spherical with increasing matrix stiffness, which is consistent with experimental observations. On 2D hydrogels, our model predicts a hemispherical-to-spindle-to-disc shape transition with increasing gel stiffness. In both cases, we show that these shape transitions emerge from competition between the energy of ATP hydrolysis associated with increased contractility that drives cell elongation and the interfacial energy that favors a rounded shape. Furthermore, our model can predict how increased energy demand in stiffer microenvironments is met by AMPK activation, which is confirmed experimentally in both 2D and 3D microenvironments and found to correlate with the upregulation of mitochondrial potential, glucose uptake, and ATP levels, as well as provide estimates of changes in intracellular adenosine nucleotide concentrations with changing environmental stiffness. Overall, we present a framework for relating adherent cell energy levels and contractility through biochemical regulation of underlying physical processes. Statement of Significance: Increasing evidence indicates that cellular metabolism is regulated by mechanical cues from the extracellular environment. Forces transmitted from the microenvironment activate mechanotransduction pathways in the cell, which trigger a cascade of biochemical events that impact cytoskeletal tension, cellular morphology and energy budget available to the cell. Using a nonequilibrium free energy-based theory, we can predict the ATP consumption, contractility, and shape of mesenchymal cancer cells, as well as how cells regulate energy levels dependent on the mechanosensitive metabolic regulator AMPK. The insights from our model can be used to understand the mechanosensitive regulation of metabolism during metastasis and tumor progression, during which cells experience dynamic changes in their microenvironment and metabolic state.

8.
Cytokine ; 179: 156620, 2024 07.
Article in English | MEDLINE | ID: mdl-38701735

ABSTRACT

PURPOSE: The emergence of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, but these drugs can also cause severe immune-related adverse effects (irAEs), including myocarditis. Researchers have become interested in exploring ways to mitigate this side effect, and one promising avenue is the use of baricitinib, a Janus kinase inhibitor known to have anti-inflammatory properties. This study aimed to examine the potential mechanism by which baricitinib in ICIs-related myocarditis. METHODS: To establish an ICIs-related myocarditis model, BALB/c mice were administered murine cardiac troponin I (cTnI) peptide and anti-mouse programmed death 1 (PD-1) antibodies. Subsequently, baricitinib was administered to the mice via intragastric administration. Echocardiography, HE staining, and Masson staining were performed to evaluate myocardial functions, inflammation, and fibrosis. Immunofluorescence was used to detect macrophages in the cardiac tissue of the mice.In vitro experiments utilized raw264.7 cells to induce macrophage polarization using anti-PD-1 antibodies. Different concentrations of baricitinib were applied to assess cell viability, and the release of pro-inflammatory cytokines was measured. The activation of the JAK1/STAT3 signaling pathway was evaluated through western blot analysis. RESULTS: Baricitinib demonstrated its ability to improve cardiac function and reduce cardiac inflammation, as well as fibrosis induced by ICIs. Mechanistically, baricitinib treatment promoted the polarization of macrophages towards the M2 phenotype. In vitro and in vivo experiments showed that anti-PD-1 promoted the release of inflammatory factors. However, treatment with baricitinib significantly inhibited the phosphorylation of JAK1 and STAT3. Additionally, the use of RO8191 reversed the effects of baricitinib, further confirming our findings. CONCLUSION: Baricitinib demonstrated its potential as a protective agent against ICIs-related myocarditis by modulating macrophage polarization. These findings provide a solid theoretical foundation for the development of future treatments for ICIs-related myocarditis.


Subject(s)
Azetidines , Janus Kinase 1 , Macrophages , Mice, Inbred BALB C , Myocarditis , Purines , Pyrazoles , STAT3 Transcription Factor , Sulfonamides , Animals , Male , Mice , Azetidines/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Janus Kinase 1/metabolism , Macrophage Activation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Myocarditis/chemically induced , Myocarditis/drug therapy , Myocarditis/pathology , Myocarditis/metabolism , Purines/pharmacology , Pyrazoles/pharmacology , RAW 264.7 Cells , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Sulfonamides/pharmacology , Troponin I/metabolism
9.
Metabolites ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668312

ABSTRACT

Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion monitoring (SIM) as a means of sensitivity enhancement. The analytes of interest are enriched in the orbitrap analyzer by using the quadrupole as a mass filter to select particular ions. In tissue extracts, SIM significantly enhances the detection of ions of low intensity, as indicated by improved signal-to-noise (S/N) ratios and measurement precision. In addition, SIM improves the accuracy of isotope-ratio measurements. SIM, however, must be deployed with care, as excessive accumulation in the orbitrap of similar m/z ions can lead, via space-charge effects, to decreased performance (signal loss, mass shift, and ion coalescence). Ion accumulation can be controlled by adjusting settings including injection time and target ion quantity. Overall, we suggest using a full scan to ensure broad metabolic coverage, in tandem with SIM, for the accurate quantitation of targeted low-intensity ions, and provide methods deploying this approach to enhance metabolome coverage.

10.
Echocardiography ; 41(4): e15805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558436

ABSTRACT

BACKGROUND: Left ventricular global longitudinal strain (LVGLS) has been recommended by current guidelines for diagnosing anthracycline-induced cardiotoxicity. However, little is known about the early changes in left atrial (LA) morphology and function in this population. Our study aimed to evaluate the potential usefulness of LA indices and their incremental value to LVGLS with three-dimensional echocardiography (3DE) in the early detection of subclinical cardiotoxicity in patients with lymphoma receiving anthracycline. METHODS: A total of 80 patients with diffuse large B-cell lymphoma who received six cycles of anthracycline-based treatment were enrolled. Echocardiography was performed at baseline (T0), after four cycles (T1), and after the completion of six cycles of chemotherapy (T2). Left ventricular ejection fraction (LVEF), LVGLS, LA volumes, LA emptying fraction (LAEF), LA active emptying fraction (LAAEF), and LA reservoir longitudinal strain (LASr) were quantified with 3DE. Left atrioventricular global longitudinal strain (LAVGLS) was calculated as the sum of peak LASr and the absolute value of peak LVGLS (LAVGLS = LASr+|LVGLS|). LV cardiotoxicity was defined as a new LVEF reduction by ≥10 percentage points to an LVEF of ≤50%. RESULTS: Fourteen (17.5%) patients developed LV cardiotoxicity at T2. LA volumes, LAEF, and LAAEF remained stable over time. Impairment of LASr (28.35 ± 5.03 vs. 25.04 ± 4.10, p < .001), LVGLS (-22.77 ± 2.45 vs. -20.44 ± 2.62, p < .001), and LAVGLS (51.12 ± 5.63 vs. 45.61 ± 5.22, p < .001) was observed by the end of the fourth cycle of chemotherapy (T1). Statistically significant declines in LVEF (61.30 ± 4.73 vs. 57.08 ± 5.83, p < .001) were only observed at T2. The relative decrease in LASr (ΔLASr), LVGLS (ΔLVGLS), and LAVGLS (ΔLAVGLS) from T0 to T1 were predictors of LV cardiotoxicity. A ΔLASr of >19.75% (sensitivity, 71.4%; specificity, 87.9%; area under the curve (AUC), .842; p < .001), a ΔLVGLS of >13.19% (sensitivity, 78.6%; specificity, 74.2%; AUC, .763; p < .001), and a ΔLAVGLS of >16.80% (sensitivity, 78.6%; specificity, 93.9%; AUC, .905; p < .001) predicted subsequent LV cardiotoxicity at T2, with the AUC of ΔLAVGLS significantly larger than that of ΔLVGLS (.905 vs. .763, p = .027). Compared to ΔLVGLS, ΔLAVGLS showed improved specificity (93.9% vs. 74.2%, p = .002) and maintained sensitivity in predicting LV cardiotoxicity. CONCLUSIONS: LASr could predict anthracycline-induced LV cardiotoxicity with excellent diagnostic performance. Incorporating LASr into LVGLS (LAVGLS) led to a significantly improved specificity and maintained sensitivity in predicting LV cardiotoxicity.


Subject(s)
Cardiotoxicity , Ventricular Dysfunction, Left , Humans , Cardiotoxicity/diagnostic imaging , Cardiotoxicity/etiology , Ventricular Function, Left , Anthracyclines/adverse effects , Global Longitudinal Strain , Stroke Volume , Antibiotics, Antineoplastic/adverse effects , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/drug therapy
11.
Nat Chem Biol ; 20(9): 1123-1132, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38448734

ABSTRACT

Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.


Subject(s)
Adenosine Triphosphate , Glycolysis , Mitochondria , Proteome , Proteome/metabolism , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Humans , Animals , Saccharomyces cerevisiae/metabolism , Proteomics/methods , Mice , Aerobiosis
13.
Altern Ther Health Med ; 30(1): 63-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773676

ABSTRACT

Objective: To investigate the clinical value of stressor perception-based meticulous nursing measures during the perioperative period of percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI). Methods and Design: A prospective randomized trial was conducted involving 104 AMI patients undergoing PCI from March 2021 to March 2022. Patients were divided into an "intervention group" and a "routine group" based on consultation numbers, with equal cases in each group. PCI procedures were performed by the same group of doctors in both groups and that basic treatment measures were similar. Intervention and Comparison: The intervention group received meticulous nursing measures based on stressor perception during the perioperative period, while the routine group received standard care. Outcome measures: The study compared treatment effects, perioperative sleep quality, negative emotion scores, and perioperative complication rates between the two groups. Results Overview: The patients in the intervention group and the conventional group were statistically similar in terms of operative time, X-ray fluoroscopy time, contrast agent dosage, catheter lab nurse preparation time, catheter lab-balloon dilation time, portal-ball time, and PCI success rate (P > .05). In the post-PCI assessment of negative emotions in both groups, the total scores of depression, anxiety, extroverted irritability, and negative emotion scores in the intervention group were higher than those in the routine group (P < .05). In the post-PCI assessment of sleep quality in both groups, subjective sleep quality score, sleep delay score, and total PSQI score in the intervention group were lower than those in the routine group (P < .05). The rate of surgical complications was 7.69% in the intervention group and 15.38% in the routine group, and the differences between the two groups were not statistically significant (P > .05). Conclusion: While meticulous nursing measures based on stressor perception did not notably enhance the effectiveness of PCI, they did significantly improve patients' negative emotions and sleep quality.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Prospective Studies , Treatment Outcome , Myocardial Infarction/surgery , Myocardial Infarction/complications , Perception
14.
Nat Commun ; 14(1): 6152, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788990

ABSTRACT

Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34-90% relative to fossil-based production processes. We expect I. orientalis can serve as a general industrial platform for production of organic acids.


Subject(s)
Bioreactors , Succinic Acid , Fermentation , Pichia
15.
J Phys Chem B ; 127(28): 6233-6240, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37431772

ABSTRACT

Cellular membranes are essential components of all living organisms. They are composed of a complex mixture of lipids with diverse chemical structures and crucial biological functions. The dynamic and heterogeneous nature of cellular membranes presents a challenge for studying their biophysical properties and organization in vivo. Raman imaging, particularly coherent Raman scattering techniques such as stimulated Raman scattering (SRS) microscopy, have emerged as powerful tools for studying cellular membranes with high spatial and temporal resolution and minimal perturbation. In this Review, we discuss the scientific importance and technical challenges of characterizing membrane composition in cellular contexts and how the advances of Raman imaging can provide unique insights into membrane phase behavior and organization. We also highlight recent applications of Raman imaging in studying cellular membranes and implications in diseases. In particular, the discovery of phase separation and a solid-phase intracellular membrane on endoplasmic reticulum is reviewed in detail, shedding light on the biology of lipotoxicity.


Subject(s)
Intracellular Membranes , Microscopy , Microscopy/methods , Cell Membrane , Membranes , Spectrum Analysis, Raman/methods
16.
BMJ Open Ophthalmol ; 8(1)2023 02.
Article in English | MEDLINE | ID: mdl-37278423

ABSTRACT

BACKGROUND: The current study aimed to analyse epidemiological data on eye burns in Wuxi, China, for the years 2015-2021, and to provide insight into the development of appropriate prevention strategies. METHODS: A retrospective study was conducted on 151 hospitalised patients with eye burns. Data collected included gender, age, the monthly distribution of incidence, cause of eye burn, the site of eye burn, the type of surgery, visual outcome, the length of hospital stay and the cost of hospital admission. Statistical analysis was performed using SPSS V.19.0 and Graph Pad Prism V.9.0. RESULTS: In a total of 151 eye burn patients, 130 were males (86.09%) and 21 were females (13.91%). The proportion of patients classified as grade III was the greatest (46.36%). The average age of our hospitalised patients with eye burns was 43.72 years and the average length of hospital stay was 17 days. The number of injuries was highest in September (14.6%). Among eye burn patients, workers and farmers became the most common occupations (62.91%, 12.58%). The most frequent cause of burns was alkali burns (19.21%), followed by acid burns (16.56%). When admitted to the hospital, patients' average vision was 0.06, and 49% of them had a poor vision (<0.3, ≥0.05). CONCLUSION: With an investigation of 7-year hospitalisation data, the current study provided a fundamental reference for epidemiological features and management of eye burns in Wuxi, China, which could contribute to the development of treatment and prevention strategies.


Subject(s)
Burns, Chemical , Eye Burns , Male , Female , Humans , Adult , Retrospective Studies , Burns, Chemical/epidemiology , Eye Burns/epidemiology , Hospitalization , China/epidemiology
17.
Cell Rep ; 42(4): 112400, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37071536

ABSTRACT

Dysregulated amino acid increases the risk for heart failure (HF) via unclear mechanisms. Here, we find that increased plasma tyrosine and phenylalanine levels are associated with HF. Increasing tyrosine or phenylalanine by high-tyrosine or high-phenylalanine chow feeding exacerbates HF phenotypes in transverse aortic constriction and isoproterenol infusion mice models. Knocking down phenylalanine dehydrogenase abolishes the effect of phenylalanine, indicating that phenylalanine functions by converting to tyrosine. Mechanistically, tyrosyl-tRNA synthetase (YARS) binds to ataxia telangiectasia and Rad3-related gene (ATR), catalyzes lysine tyrosylation (K-Tyr) of ATR, and activates the DNA damage response (DDR) in the nucleus. Increased tyrosine inhibits the nuclear localization of YARS, inhibits the ATR-mediated DDR, accumulates DNA damage, and elevates cardiomyocyte apoptosis. Enhancing ATR K-Tyr by overexpressing YARS, restricting tyrosine, or supplementing tyrosinol, a structural analog of tyrosine, promotes YARS nuclear localization and alleviates HF in mice. Our findings implicate facilitating YARS nuclear translocation as a potential preventive and/or interfering measure against HF.


Subject(s)
Heart Failure , Tyrosine-tRNA Ligase , Animals , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Lysine/genetics , Phenylalanine , Tyrosine/metabolism , Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism
18.
Metab Eng Commun ; 16: e00220, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36860699

ABSTRACT

Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, Issatchenkia orientalis, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of I. orientalis for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (cimA) variant for expression in I. orientalis. We then adapted a piggyBac transposon system for I. orientalis that allowed us to simultaneously explore the effects of different cimA gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-cimA strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of I. orientalis as a chassis for citramalate production.

19.
Nature ; 614(7947): 349-357, 2023 02.
Article in English | MEDLINE | ID: mdl-36725930

ABSTRACT

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Subject(s)
Adenosine Triphosphate , Breast Neoplasms , Citric Acid Cycle , Deceleration , Lung Neoplasms , Neoplasm Metastasis , Pancreatic Neoplasms , Animals , Mice , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Citric Acid Cycle/physiology , Energy Metabolism , Glycolysis , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Organ Specificity , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Biosynthesis
20.
Metab Eng ; 76: 1-17, 2023 03.
Article in English | MEDLINE | ID: mdl-36603705

ABSTRACT

The parameterization of kinetic models requires measurement of fluxes and/or metabolite levels for a base strain and a few genetic perturbations thereof. Unlike stoichiometric models that are mostly invariant to the specific strain, it remains unclear whether kinetic models constructed for different strains of the same species have similar or significantly different kinetic parameters. This important question underpins the applicability range and prediction limits of kinetic reconstructions. To this end, herein we parameterize two separate large-scale kinetic models using K-FIT with genome-wide coverage corresponding to two distinct strains of Saccharomyces cerevisiae: CEN.PK 113-7D strain (model k-sacce306-CENPK), and growth-deficient BY4741 (isogenic to S288c; model k-sacce306-BY4741). The metabolic network for each model contains 306 reactions, 230 metabolites, and 119 substrate-level regulatory interactions. The two models (for CEN.PK and BY4741) recapitulate, within one standard deviation, 77% and 75% of the fitted dataset fluxes, respectively, determined by 13C metabolic flux analysis for wild-type and eight single-gene knockout mutants of each strain. Strain-specific kinetic parameterization results indicate that key enzymes in the TCA cycle, glycolysis, and arginine and proline metabolism drive the metabolic differences between these two strains of S. cerevisiae. Our results suggest that although kinetic models cannot be readily used across strains as stoichiometric models, they can capture species-specific information through the kinetic parameterization process.


Subject(s)
Metabolic Flux Analysis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Kinetics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL