Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Leuk Lymphoma ; : 1-11, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775302

ABSTRACT

To evaluate the effects of gene mutations on Bruton tyrosine kinase inhibitor, zanubrutinib's effectiveness in patients with diffuse large B-cell lymphoma (DLBCL), we examined pooled data from four single-arm studies (BGB-3111-AU-003 [NCT02343120], BGB-3111-207 [NCT03145064], BGB-3111_GA101_Study_001 [NCT02569476], BGB-3111-213 [NCT03520920]; n = 121). Objective response rate (ORR) was higher, though not statistically significant, in patients with activated B-cell-like (ABC)- and unclassified DLBCL (42.9% [21/49]) versus those with germinal-center B-cell-like DLBCL (14.3% [1/7]; p = 0.15). Patients with CD79B mutations had better ORR (60%) versus patients with wild-type alleles (25.9%, p < 0.01). Higher TCL1A expression correlated with better zanubrutinib response (p = 0.03), longer progression-free survival (p = 0.01), and longer overall survival (p = 0.12). TCL1A expression was higher in ABC-DLBCL (p < 0.001) and MYD88/CD79B-mutated subtypes (p < 0.0001). Eighteen patients with high MYC/BCL-2 expression responded better to zanubrutinib (ORR = 61 vs. 29%, p = 0.02). Our results support assessing CD79B mutations, co-expressor DLBCL, and TCL1A expression status to identify patients with DLBCL who will benefit from zanubrutinib.

2.
Structure ; 32(5): 550-561.e5, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38460520

ABSTRACT

TIGIT is mainly expressed on T cells and is an inhibitory checkpoint receptor that binds to its ligand PVR in the tumor microenvironment. Anti-TIGIT monoclonal antibodies (mAbs) such as Ociperlimab and Tiragolumab block the TIGIT-PVR interaction and are in clinical development. However, the molecular blockade mechanism of these mAbs remains elusive. Here, we report the crystal structures of TIGIT in complex with Ociperlimab_Fab and Tiragolumab_Fab revealing that both mAbs bind TIGIT with a large steric clash with PVR. Furthermore, several critical epitopic residues are identified. Interestingly, the binding affinity of Ociperlimab toward TIGIT increases approximately 17-fold when lowering the pH from 7.4 to 6.0. Our structure shows a strong electrostatic interaction between ASP103HCDR3 and HIS76TIGIT explaining the pH-responsive mechanism of Ociperlimab. In contrast, Tiragolumab does not show an acidic pH-dependent binding enhancement. Our results provide valuable information that could help to improve the efficacy of therapeutic antibodies for cancer treatment.


Subject(s)
Models, Molecular , Protein Binding , Receptors, Immunologic , Hydrogen-Ion Concentration , Humans , Receptors, Immunologic/metabolism , Receptors, Immunologic/chemistry , Crystallography, X-Ray , Antibodies, Monoclonal/chemistry , Binding Sites , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/immunology
3.
Blood Adv ; 8(7): 1639-1650, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38315878

ABSTRACT

ABSTRACT: The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUT were associated with higher rates of CXCR4MUT (P < .05). Patients with CXCR4MUT (frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WT treated with BTKis. CXCR4NS was associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NS treated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUT or TP53MUT had worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes.


Subject(s)
Adenine/analogs & derivatives , Piperidines , Pyrazoles , Pyrimidines , Waldenstrom Macroglobulinemia , Humans , Waldenstrom Macroglobulinemia/drug therapy , Waldenstrom Macroglobulinemia/genetics , Myeloid Differentiation Factor 88/genetics , Biomarkers
4.
MAbs ; 15(1): 2292305, 2023.
Article in English | MEDLINE | ID: mdl-38095560

ABSTRACT

Pharmaceutical companies have recently focused on accelerating the timeline for initiating first-in-human (FIH) trials to allow quick assessment of biologic drugs. For example, a stable cell pool can be used to produce materials for the toxicology (Tox) study, reducing time to the clinic by 4-5 months. During the coronavirus disease 2019 (COVID-19) pandemic, the anti-COVID drugs timeline from DNA transfection to the clinical stage was decreased to 6 months using a stable pool to generate a clinical drug substrate (DS) with limited stability, virus clearance, and Tox study package. However, a lean chemistry, manufacturing, and controls (CMC) package raises safety and comparability risks and may leave extra work in the late-stage development and commercialization phase. In addition, whether these accelerated COVID-19 drug development strategies can be applied to non-COVID projects and established as a standard practice in biologics development is uncertain. Here, we present a case study of a novel anti-tumor drug in which application of "fast-to-FIH" approaches in combination with BeiGene's de-risk strategy achieved successful delivery of a complete CMC package within 10 months. A comprehensive comparability study demonstrated that the DS generated from a stable pool and a single-cell-derived master cell bank were highly comparable with regards to process performance, product quality, and potency. This accomplishment can be a blueprint for non-COVID drug programs that approach the pace of drug development during the pandemic, with no adverse impact on the safety, quality, and late-stage development of biologics.


Subject(s)
Antineoplastic Agents , Biological Products , COVID-19 , Humans , Antibodies, Monoclonal , Pharmaceutical Preparations , Antineoplastic Agents/therapeutic use
5.
Cell Rep Med ; 4(12): 101302, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38052215

ABSTRACT

The RATIONALE-307 study (ClinicalTrials.gov: NCT03594747) demonstrates prolonged progression-free survival (PFS) with first-line tislelizumab plus chemotherapy versus chemotherapy in advanced lung squamous cell carcinoma (LUSC; N = 360). Here we describe an immune-related gene expression signature (GES), composed of genes involved in both innate and adaptive immunity, that appears to differentiate tislelizumab plus chemotherapy PFS benefit versus chemotherapy. In contrast, a tislelizumab plus chemotherapy PFS benefit is observed regardless of programmed death ligand 1 (PD-L1) expression or tumor mutational burden (TMB). Genetic analysis reveals that NRF2 pathway activation is enriched in PD-L1positive and TMBhigh patients. NRF2 pathway activation is negatively associated with PFS, which affects efficacy outcomes associated with PD-L1 and TMB status, impairing their predictive potential. Mechanistic studies demonstrate that NRF2 directly mediates PD-L1 constitutive expression independent of adaptive PD-L1 regulation in LUSC. In summary, the GES is an immune signature that might identify LUSC patients likely to benefit from first-line tislelizumab plus chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , NF-E2-Related Factor 2/genetics , Programmed Cell Death 1 Receptor , Treatment Outcome , Tumor Microenvironment/genetics
6.
Front Med ; 17(6): 1170-1185, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747585

ABSTRACT

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.


Subject(s)
Antineoplastic Agents , Receptors, Tumor Necrosis Factor , Mice , Animals , Receptors, Tumor Necrosis Factor/physiology , Receptors, OX40 , Membrane Glycoproteins , Ligands , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology
7.
Biomark Res ; 11(1): 25, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36879284

ABSTRACT

BACKGROUND: Activated immune cells (IC) in the tumor microenvironment (TME) are critical for anti-tumor efficacy. Greater understanding of the dynamic diversity and crosstalk between IC is needed to clarify their association with immune checkpoint inhibitor efficacy. METHODS: Patients from three tislelizumab monotherapy trials in solid tumors (NCT02407990, NCT04068519, NCT04004221) were retrospectively divided into subgroups by CD8+ T-cell and macrophage (Mφ) levels, assessed via multiplex immunohistochemistry (mIHC; n = 67) or gene expression profiling (GEP; n = 629). RESULTS: A trend of longer survival was observed in patients with both high CD8+ T-cell and Mφ levels versus other subgroups in the mIHC analysis (P = 0.11), which was confirmed with greater statistical significance in the GEP analysis (P = 0.0001). Co-existence of CD8+ T cells and Mφ was coupled with elevated CD8+ T-cell cytotoxicity, T-cell trafficking, MHC class I antigen presentation signatures/genes, and enrichment of the pro-inflammatory Mφ polarization pathway. Additionally, a high level of pro-inflammatory CD64+ Mφ density was associated with an immune-activated TME and survival benefit with tislelizumab (15.2 vs. 5.9 months for low density; P = 0.042). Spatial proximity analysis revealed that closer proximity between CD8+ T cells and CD64+ Mφ was associated with a survival benefit with tislelizumab (15.2 vs. 5.3 months for low proximity; P = 0.024). CONCLUSIONS: These findings support the potential role of crosstalk between pro-inflammatory Mφ and cytotoxic T cells in the clinical benefit of tislelizumab. TRIAL REGISTRATION: NCT02407990, NCT04068519, NCT04004221.

8.
J Environ Public Health ; 2022: 8506676, 2022.
Article in English | MEDLINE | ID: mdl-35958389

ABSTRACT

EMC (economic management cost) of the government has become a hot topic of concern from all walks of life. Controlling and reducing government EMC is the requirement for building a conservation-oriented society and deepening the reform of public budget. Dynamic cost accounting calculates the cost of cost objects through the confirmation, measurement, and distribution of production costs. In this article, it is innovatively proposed to integrate BSC (balanced score card) into EMC control, and analyze the logical relationship between system objectives and functions by using the mathematical model. Based on GA (genetic algorithm) cost optimization control concept and specific control ideas, individuals who meet the evolutionary characteristics are stored in the crossover database and participate in crossover operation as parents when crossing. In order to improve the local optimization ability of the algorithm, parallel mutation operation mechanism is introduced, which can execute multiple mutation rules at the same time. The results show that the average convergence time of this algorithm is 0.186s and the variance of population fitness is 288.19. The conclusion shows that the algorithm proposed in this article can overcome the problems of slow convergence speed, low accuracy, and local convergence of GA, and effectively improve the overall performance of the algorithm.


Subject(s)
Algorithms , Conservation of Natural Resources , Government , Humans , Models, Theoretical
9.
Gastric Cancer ; 25(5): 943-955, 2022 09.
Article in English | MEDLINE | ID: mdl-35778636

ABSTRACT

BACKGROUND: In solid tumor Phase 1/2 trials (NCT02407990; NCT04068519), tislelizumab demonstrated clinical benefit, including in advanced gastroesophageal adenocarcinoma (GEA). However, the majority of patients with GEA did not respond, highlighting the need to understand mechanisms of resistance and identify predictive biomarkers for response. METHODS: All tislelizumab-treated patients with GEA from the Phase 1/2 trials were included (N = 105). Programmed death-ligand 1 (PD-L1) expression (Tumor Area Positivity [TAP] ≥ 5%), interferon gamma (IFNγ)-related gene signature, gene expression profile, tumor mutational burden (TMB), and gene hyperamplification (HA) were analyzed for correlation with tislelizumab. RESULTS: A moderate association was observed between PD-L1 TAP ≥ 5%, IFNγ gene signature, TMB-high and efficacy. A potential correlation between hyperamplification (HA +) and worse outcomes with programmed cell death protein 1 (PD-1) inhibition was identified. Hyperamplified genes were mainly enriched in cancer progression pathways, including cell cycle and RTK-RAS-PI3K pathways. Joint PD-L1 TAP ≥ 5% and lack of hyperamplification showed the most favorable benefit with an objective response rate of 29.4%, and median progression-free survival and overall survival of 4.1 and 14.7 months, respectively. Tumors with TAP ≥ 5% and HA - had inflamed immune signatures with increased immune cell infiltration, enhanced anti-tumor cytotoxic activity and antigen presentation signatures. Findings were validated in two independent gastric and gastrointestinal cancer cohorts treated with immune checkpoint inhibitors. CONCLUSIONS: In GEA, PD-L1 positivity, IFNγ-related gene signature and TMB-high status were positively associated with tislelizumab clinical benefit, whereas HA was associated with worse clinical outcomes. Combining PD-L1 positivity and HA - may help identify patients more likely to benefit from PD-1 blockade.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Stomach Neoplasms , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Biomarkers, Tumor/genetics , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Esophageal Neoplasms , Esophagogastric Junction/pathology , Humans , Lung Neoplasms/drug therapy , Mutation , Phosphatidylinositol 3-Kinases/genetics , Programmed Cell Death 1 Receptor/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics
10.
Front Cell Dev Biol ; 10: 899353, 2022.
Article in English | MEDLINE | ID: mdl-35712667

ABSTRACT

Characterizing the tumor microenvironment (TME) of archived clinical tissues requires reliable gene expression profiling (GEP) of formalin-fixed paraffin-embedded (FFPE) samples. The EdgeSeq Precision Immuno-oncology Panel (PIP) is a targeted GEP assay designed for TME characterization but lacks widespread technical validation on a large cohort of clinical samples. Here, we evaluated its performance by exploring its concordance with multiple orthogonal platforms using 1,220 FFPE samples across various cancer types. Quantitative comparisons with RNA-seq and NanoString showed strong correlations at the sample level (median ρ = 0.73 and 0.81) and moderate correlations at the single-gene level (median ρ = 0.49 and 0.57). Gene signature analysis revealed high concordance with RNA-seq on widely used signatures for TME characterization and immune checkpoint inhibitor (ICI) efficacy prediction, though some genes in these signatures are not targeted by EdgeSeq PIP. From a histopathological viewpoint, the tumor/immune abundances derived from hematoxylin and eosin (H & E) staining were well recapitulated by the transcriptomic profiles assessed by EdgeSeq PIP. Furthermore, the mRNA level of PD-L1 assessed by EdgeSeq PIP was moderately correlated with the PD-L1 score (ρ = 0.65) estimated by immunohistochemistry (IHC); the mRNA level of CD8A aligned well (ρ = 0.55) with the IHC-derived abundance of CD8+ T cells. Overall, our results showed that EdgeSeq PIP generated well-correlated data with independent approaches at mRNA, protein, and histological levels, thus providing strong technical support for further using EdgeSeq PIP in biomarker studies and companion diagnostic (CDx) development.

11.
Front Immunol ; 13: 828319, 2022.
Article in English | MEDLINE | ID: mdl-35273608

ABSTRACT

TIGIT (T-cell immunoglobulin and ITIM domain) has emerged as a promising target in cancer immunotherapy. It is an immune "checkpoint" inhibitor primarily expressed on activated T cells, NK cells and Tregs. Engagement of TIGIT to its ligands PVR and PVR-L2 leads to inhibitory signaling in T cells, promoting functional exhaustion of tumor-infiltrating T lymphocytes. Here, we described the pre-clinical characterization of Ociperlimab (BGB-A1217), a novel humanized IgG1 anti-TIGIT antibody (mAb), and systemically evaluated the contribution of Fc functions in the TIGIT mAb-mediated anti-tumor activities. BGB-A1217 binds to the extracellular domain of human TIGIT with high affinity (KD = 0.135 nM) and specificity, and efficiently blocks the interaction between TIGIT and its ligands PVR or PVR-L2. Cell-based assays show that BGB-A1217 significantly enhances T-cell functions. In addition, BGB-A1217 induces antibody dependent cellular cytotoxicity (ADCC) against Treg cells, activates NK cells and monocytes, and removes TIGIT from T cell surfaces in an Fc-dependent manner, In vivo, BGB-A1217, either alone or in combination with an anti-PD-1 mAb elicits strong immune responses and potent anti-tumor efficacy in pre-clinical models. Moreover, the Fc effector function is critical for the anti-tumor activity of BGB-A1217 in a syngeneic human TIGIT-knock-in mouse model. The observed anti-tumor efficacy is associated with a pharmacodynamic change of TIGIT down-regulation and Treg reduction. These data support the selection of BGB-A1217 with an effector function competent Fc region for clinical development for the treatment of human cancers.


Subject(s)
Neoplasms , Receptors, Immunologic , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors , Immunity , Ligands , Mice , Neoplasms/drug therapy , Receptors, Immunologic/metabolism
12.
Clin Cancer Res ; 28(6): 1147-1156, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34716199

ABSTRACT

PURPOSE: Tislelizumab is an anti-programmed cell death protein 1 (anti-PD-1) monoclonal antibody specifically designed to minimize binding to Fcγ receptors (FcγR). PATIENTS AND METHODS: Here, we present the extended 3-year follow-up of a phase II study of tislelizumab in 70 patients with relapsed/refractory classical Hodgkin lymphoma (cHL) who failed or were ineligible for autologous stem cell transplantation. RESULTS: With a median follow-up of 33.8 months, the overall response rate by the independent review committee was 87.1%, and the complete response (CR) rate was 67.1%. Responses were durable as shown by a median duration of response of 31.3 months, and median progression-free survival (PFS) of 31.5 months. The 3-year PFS and overall survival rates were 40.8% and 84.8%, respectively. Treatment-related adverse events (TRAEs) of any grade occurred in 97.1% of patients; the grade ≥3 TRAE rate was low (31.4%), and only 8.6% of patients experienced adverse events leading to treatment discontinuation. Correlative biomarker analysis showed that FcγRΙ-expressing macrophages had no observed impact on either the CR rate or PFS achieved with tislelizumab, which may be potentially related to its engineered Fc region. CONCLUSIONS: With extended follow-up, tislelizumab yielded long-term benefits and demonstrated a favorable safety profile for patients with relapsed/refractory cHL. This trial was registered at clinicaltrials.gov as NCT03209973.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Follow-Up Studies , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Transplantation, Autologous
13.
Future Oncol ; 17(22): 2893-2905, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34189951

ABSTRACT

Aims: To explore the prognostic value of high PD-L1 expression on tumor cells (TC) and tumor-infiltrating immune cells (TIIC) in urothelial carcinoma (UC). Patients & methods: 162 UC specimens were evaluated for PD-L1 expression on TIIC and TC with the SP263 assay. High PD-L1 expression was defined as ≥25% staining. Results: High PD-L1 expression on TC in UC patients with stage T1-4 disease was associated with poor overall survival. However, high PD-L1 expression on TIIC in UC patients with stage T1-4 disease revealed favorable disease-free and overall survival; more significant differences were observed in patients with stages T2-4. Multivariate analysis revealed that high PD-L1 expression on TIIC was an independent prognostic predictor for better disease-free and overall survival. Conclusion: High PD-L1 expression on TIIC, but not on TC, is a favorable prognostic factor in UC.


Lay abstract Bladder cancer is the tenth most common form of cancer worldwide, and urothelial carcinoma is the most common type of bladder cancer. PD-L1 is a protein that can be expressed on the surface of many tissue types, including tumor cells (TC) and tumor-infiltrating immune cells (TIIC). PD-L1 can help the tumor evade the body's natural immune defense system. The expression of PD-L1 not only related to the response of immunotherapy but is also associated with the prognosis in bladder cancer. However, the prognostic significance of PD-L1 expression on TC and TIIC remains controversial. This study drew a conclusion that high PD-L1 expression on TIIC, but not on TC, is a favorable prognostic factor in urothelial carcinoma.


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Transitional Cell/mortality , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasm Recurrence, Local/epidemiology , Urinary Bladder Neoplasms/mortality , Adult , Aged , B7-H1 Antigen/analysis , Biomarkers, Tumor/analysis , Biopsy , Carcinoma, Transitional Cell/diagnosis , Carcinoma, Transitional Cell/immunology , Carcinoma, Transitional Cell/surgery , Cystectomy , Disease-Free Survival , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Staging , Prognosis , Retrospective Studies , Risk Assessment/methods , Tumor Microenvironment/immunology , Urinary Bladder/immunology , Urinary Bladder/pathology , Urinary Bladder/surgery , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/surgery
14.
Neoplasia ; 22(9): 431-440, 2020 09.
Article in English | MEDLINE | ID: mdl-32652442

ABSTRACT

Pamiparib, an investigational Poly (ADP-ribose) polymerase (PARP) inhibitor in clinical development, demonstrates excellent selectivity for both PARP1 and PARP2, and superb anti-proliferation activities in tumor cell lines with BRCA1/2 mutations or HR pathway deficiency (HRD). Pamiparib has good bioavailability and is 16-fold more potent than olaparib in an efficacy study using BRCA1 mutated MDA-MB-436 breast cancer xenograft model. Pamiparib also shows strong anti-tumor synergy with temozolomide (TMZ), a DNA alkylating agent used to treat brain tumors. Compared to other PARP inhibitors, pamiparib demonstrated improved penetration across the blood brain barrier (BBB) in mice. Oral administration of pamiparib at a dose as low as 3 mg/kg is sufficient to abrogate PARylation in brain tumor tissues. In SCLC-derived, TMZ-resistant H209 intracranial xenograft model, combination of pamiparib with TMZ overcomes its resistance and shows significant tumor inhibitory effects and prolonged life span. Our data suggests that combination of pamiparib with TMZ has unique potential for treatment of brain tumors. Currently, the combination therapy of pamiparib with TMZ is evaluated in clinical trial [NCT03150862].


Subject(s)
Brain Neoplasms/drug therapy , Fluorenes/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Apoptosis , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30704899

ABSTRACT

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Subject(s)
Autophagosomes/enzymology , Autophagy-Related Proteins/metabolism , Autophagy , Glycogen Synthase Kinase 3/metabolism , Lipid Metabolism , Liver/enzymology , Lysine Acetyltransferase 5/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphate-Binding Proteins/metabolism , Trans-Activators/metabolism , Acetylation , Animals , Autophagosomes/pathology , Autophagy-Related Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Lipid Droplets/metabolism , Liver/pathology , Lysine Acetyltransferase 5/genetics , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Membrane Proteins , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphate-Binding Proteins/genetics , Phosphorylation , Protein Processing, Post-Translational , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Signal Transduction , Trans-Activators/genetics , Tumor Suppressor Proteins
16.
Cancer Lett ; 440-441: 180-188, 2019 01.
Article in English | MEDLINE | ID: mdl-30347283

ABSTRACT

Insufficient tumor tissue is a major barrier for cancer biology research in small-cell lung cancer (SCLC) and has driven the development of patient-derived xenografts (PDXs) from biopsy tumor tissues. Here, we utilized transbronchoscopic biopsy specimens from SCLC tumors to establish PDXs and evaluated the genomic profile using next-generation sequencing and an RNA sequencing platform. The PDX establishment rate was 54.1% (40/74). PDXs largely recapitulated the major characteristics of their corresponding primary tumors, such as histopathology, genetic profile, and chemo-responsiveness. Compared with chemosensitive (chemo-S) PDXs, chemorefractory (chemo-R) PDXs demonstrated significant gene aberrances in the mitogen-activated protein kinase (MAPK) pathway and a higher frequency of receptor tyrosine kinase (RTK)-related genes. Phosphorylated ERK (pERK) was associated with chemo-R status. Patients with positive pERK expression demonstrated significantly inferior progression-free survival after first-line chemotherapy compared with that of patients who were negative for pERK (p < 0.001). Collectively, transbronchoscopic biopsy SCLC PDXs can serve as a model for genomic profiling and identifying biomarkers predictive of chemo-R status. Using PDXs, RTK-related gene aberrances and pERK expression were found to be associated with chemo-R SCLC.


Subject(s)
Biomarkers, Tumor/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays/methods , Adult , Aged , Aged, 80 and over , Biopsy/methods , Bronchoscopy/methods , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Middle Aged , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism
18.
Cell Res ; 28(5): 544-555, 2018 May.
Article in English | MEDLINE | ID: mdl-29497138

ABSTRACT

The commonly used antimitotic chemotherapeutic agents such as taxol and vinblastine arrest cell cycle progression by disrupting mitotic spindles, and cause cancer cells to undergo apoptosis through 'mitotic catastrophe'. The molecular mechanisms by which these drugs induce apoptosis and their relevance to clinical efficacy are not known. Facilitated by a new spindle poison diazonamide, we found that apoptosis induced by these agents requires death receptor 3 (DR3). Mitotic arrest by these agents induces lysosome-dependent secretion of the DR3 ligand, TL1A. Engagement of TL1A with DR3 stimulates the formation of FADD-containing and caspase-8-containing death-inducing signaling complex (DISC), which subsequently activates apoptosis in cells that express DR3. Expression of DR3 and TL1A correlates with the apoptotic response of human tumor xenograft models and human cancer cell lines to antimitotic drugs, providing further evidence that these drugs kill cancer cells through the DR3/TL1A-mediated pathway. These results suggest that TL1A and DR3 may hold promise to be used as biomarkers for predicting clinical response to antimitotic therapeutics.


Subject(s)
Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Tumor Necrosis Factor, Member 25/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Animals , Autocrine Communication/drug effects , Caspase 8/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Ligands , M Phase Cell Cycle Checkpoints/drug effects , Mice, Nude , Oxazoles/pharmacology , Paclitaxel/pharmacology , Recombinant Proteins/pharmacology
19.
Oncotarget ; 8(40): 67043-67055, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978015

ABSTRACT

Aldehyde dehydrogenase 1A1 (ALDH1A1) is a member of the aldehyde dehydrogenase superfamily that oxidizes aldehydes to their corresponding acids, reactions that are coupled to the reduction of NAD+ to NADH. We report here that ALDH1A1 can also use glutathione (GSH) and dihydrolipoic acid (DHLA) as electron donors to reduce NAD+ to NADH. The GSH/DHLA-dependent NAD+-reduction activity of ALDH1A1 is not affected by the aldehyde dehydrogenase inhibitor or by mutation of the residues in its aldehyde-binding pocket. It is thus a distinct biochemical reaction from the classic aldehyde-dehydrogenase activity catalyzed by ALDH1A1. We also found that the ectopic expression of ALDH1A1 decreased the intracellular NAD+/NADH ratio, while knockout of ALDH1A1 increased the NAD+/NADH ratio. Simultaneous knockout of ALDH1A1 and its isozyme ALDH3A1 in lung cancer cell line NCI-H460 inhibited tumor growth in a xenograft model. Moreover, the ALDH1A1 mutants that retained their GSH/DHLA-dependent NAD+ reduction activity but lost their aldehyde-dehydrogenase activity were able to decrease the NAD+/NADH ratio and to rescue the impaired growth of ALDH1A1/3A1 double knockout tumor cells. Collectively, these results suggest that this newly characterized GSH/DHLA-dependent NAD+-reduction activity of ALDH1A1 can decrease cellular NAD+/NADH ratio and promote tumor growth.

20.
Nucleic Acids Res ; 45(22): e180, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29036617

ABSTRACT

Forward genetic screens using mammalian embryonic stem (ES) cells have identified genes required for numerous cellular processes. However, loss-of-function screens are more difficult to conduct in diploid cells because, in most cases, both alleles of a gene must be mutated to exhibit a phenotype. Recently, mammalian haploid ES cell lines were successfully established and applied to several recessive genetic screens. However, all these screens were performed in mixed pools of mutant cells and were mainly based on positive selection. In general, negative screening is not easy to apply to these mixed pools, although quantitative deep sequencing of mutagen insertions can help to identify some 'missing' mutants. Moreover, the interplay between different mutant cells in the mixed pools would interfere with the readout of the screens. Here, we developed a method for rapidly generating arrayed haploid mutant libraries in which the proportion of homozygous mutant clones can reach 85%. After screening thousands of individual mutant clones, we identified a number of novel factors required for the onset of differentiation in ES cells. A negative screen was also conducted to discover mutations conferring cells with increased sensitivity to DNA double-strand breaks induced by the drug doxorubicin. Both of these screens illustrate the value of this system.


Subject(s)
Genetic Testing/methods , Haploidy , Mouse Embryonic Stem Cells/metabolism , Mutation , Animals , Cell Line , Cells, Cultured , Clone Cells/cytology , Clone Cells/metabolism , DNA Transposable Elements/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Mutagenesis, Insertional/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...