Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(30): 9351-9356, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29870143

ABSTRACT

Oxygen activation plays a crucial role in many important chemical reactions such as oxidation of organic compounds and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in situ formed amorphous H2 WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6 ] and water of H2 WO4 , consequently leading to optimized surface electronic configuration and strong metal-support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight into the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts.

2.
Angew Chem Int Ed Engl ; 56(29): 8407-8411, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28052568

ABSTRACT

0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3 , BiVO4 , InVO4 and CuV2 O6 ) QDs/graphitic carbon nitride (g-C3 N4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3 N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts. This work is expected to provide a new concept to construct multifunctional 0D/2D nanocomposites for a large variety of opto-electronic applications, not limited in photocatalysis.

3.
Dalton Trans ; 45(18): 7866-74, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27064264

ABSTRACT

In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications.

4.
Sci Rep ; 4: 6023, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25113225

ABSTRACT

Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.

5.
Nanoscale ; 4(5): 1652-7, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22298325

ABSTRACT

Transparent luminescent bulk nanocomposites of polysiloxane (PSO) embedded with semiconductor nanocrystals (NCs) have been fabricated by the direct dispersion of CdS NCs in alkyl-(poly)siloxane (APS) followed by co-polymerization. The non-polar characteristics of the APS precursor are compatible with the CdS NC surface (oleylamine), which allows the direct dispersion of the CdS NCs without the need of any surfactant exchange. Chemical crosslinking of the NC-APS dispersion via hydrosilylation between Si-H and the vinyl group in APS immobilizes the CdS NCs in the polysiloxane network. Net-shaped three-dimensional bulk transparent polysiloxane/CdS NC composites were obtained by liquid casting of the NC-precursor dispersion and chemical crosslinking. The PSO/CdS NC composites show visible luminescence under ultraviolet excitation and the luminescent color is tunable from blue to red by controlling the NC concentration in the composite. Photoluminescence spectral analyses reveal the origin of the luminescence as being from the defect emission of the CdS NCs (550-900 nm) and an emission from the PSO matrix (380-550 nm). The luminescent spectra covered a wide range from the ultraviolet to the near-infrared region. The luminescence of the PSO/CdS NC nanocomposites was stable without any apparent degradation after exposure to air for a long time. This simple direct dispersion process is feasible for the fabrication of luminescent nanocomposites with useful optical properties for potential applications in optics and photoelectron devices.


Subject(s)
Cadmium Compounds/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Siloxanes/chemistry , Sulfides/chemistry , Amines/chemistry , Nanoparticles/ultrastructure , Spectrophotometry, Ultraviolet , Surface Properties , Surface-Active Agents/chemistry
6.
Dalton Trans ; 39(26): 6112-23, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20571652

ABSTRACT

Porous lanthanide oxides were fabricated by a precursor-thermolysis method. The precursors were synthesized by a hydrothermal reaction with lanthanide (La, Ce, Pr and Nd) salts, sodium oxalate and asparagine (or glutamine). Under hydrothermal conditions asparagine and glutamine exhibited greatly different complexation abilities with lanthanide cations. The competitive interactions of lanthanide cations with oxalate anions and asparagine (or glutamine) gave rise to the formation of precursors with different structures and morphologies. ESI-MS detection further confirmed the different complexation abilities of asparagine or glutamine with lanthanide cations at the molecular level. Variation of oxalate anion concentration or the pH value of the reaction solution could tune the morphology of the products. After calcination, porous lanthanide oxides were obtained with the morphologies of their corresponding precursors. Our work suggests that the complexation ability of organic molecules with metal cations could be a crucial factor for morphological control of the precursors. Moreover, considering the diversity of organic additives and metal salts, other metal oxides with complex composition and morphology could be fabricated via this organic molecule-modified precursor method.


Subject(s)
Amino Acids/chemistry , Coordination Complexes/chemistry , Lanthanoid Series Elements/chemistry , Oxalates/chemistry , Oxides/chemistry , Asparagine/chemistry , Glutamine/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Porosity , Spectrometry, Mass, Electrospray Ionization , Temperature
7.
Chem Commun (Camb) ; (13): 1742-4, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19294281

ABSTRACT

A series of lanthanide oxide microspheres and hollow spheres have been fabricated by thermolysis of corresponding lanthanide coordination compounds formed via bottom-up self-assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...