Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(21): 13726-13737, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742941

ABSTRACT

Human vision excels in perceiving nighttime low illumination due to biological feedforward adaptation. Replicating this ability in biomimetic vision using solid-state devices has been highly sought after. However, emulating scotopic adaptation, entailing a confluence of efficient photoexcitation and dynamic carrier modulation, presents formidable challenges. Here, we demonstrate a low-power and bionic scotopic adaptation transistor by coupling a light-absorption layer and an electron-trapping layer at the bottom of the semiconducting channel, enabling simultaneous achievement of efficient generation of free photocarriers and adaptive carrier accumulation within a single device. This innovation empowers our transistor to exhibit sensitivity-potentiated characteristics after adaptation, detecting scotopic-level illumination (0.001 lx) with exceptional photosensitivity up to 103 at low voltages below 2 V. Moreover, we have successfully replicated diverse scotopic vision functions, encompassing time-dependent visual threshold enhancement, light intensity-dependent adaptation index, imaging contrast enhancement for nighttime low illumination imaging, opening an opportunity for artificial night vision.

2.
Adv Mater ; : e2401822, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555558

ABSTRACT

Advanced organic electronic technologies have put forward a pressing demand for cost-effective and high-throughput fabrication of organic single-crystal films (OSCFs). However, solution-printed OSCFs are typically plagued by the existence of abundant structural defects, which pose a formidable challenge to achieving large-scale and high-performance organic electronics. Here, it is elucidated that these structural defects are mainly originated from printing flow-induced anisotropic growth, an important factor that is overlooked for too long. In light of this, a surfactant-additive printing method is proposed to effectively overcome the anisotropic growth, enabling the deposition of uniform OSCFs over the wafer scale at a high speed of 1.2 mm s-1 at room temperature. The resulting OSCF exhibits appealing performance with a high average mobility up to 10.7 cm2 V-1 s-1, which is one of the highest values for flexible organic field-effect transistor arrays. Moreover, large-scale OSCF-based flexible logic circuits, which can be bent without degradation to a radius as small as 4.0 mm and over 1000 cycles are realized. The work provides profound insights into breaking the limitation of flow-induced anisotropic growth and opens new avenues for printing large-scale organic single-crystal electronics.

3.
Adv Mater ; 34(13): e2109818, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35073612

ABSTRACT

Organic single-crystal films (OSCFs) provide an unprecedented opportunity for the development of new-generation organic single-crystal electronics. However, crystallization of organic films is normally governed by stochastic nucleation and incoherent growth, posing a formidable challenge to grow large-sized OSCFs. Here, an "orientation filter funnel" concept is presented for the scalable growth of OSCFs with well-aligned, singly orientated crystals. By rationally designing solvent wetting/dewetting patterns on the substrate, this approach can produce seed crystals with the same crystallographic orientation and then maintain epitaxial growth of these crystals, enabling the formation of large-area OSCFs. As a result, this unique concept for crystal growth not only enhances the average mobility of organic film by 4.5-fold but also improves its uniformity of electrical properties, with a low mobility variable coefficient of 9.8%, the new lowest record among organic devices. The method offers a general and scalable route to produce OSCFs toward real-word electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...