Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Sci Total Environ ; 951: 175759, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39182769

ABSTRACT

Biological treatment of food waste (FW) by black soldier fly larvae (BSFL) is considered as an effective management strategy. The composition and concentrations of nutrients in FW change during its storage and transport period, which potentially affect the FW conversion and BSFL growth. The present study systematically investigated the effect of different storage times (i.e., 0-15 d) on FW characteristics and its substantial influence on the BSFL growth. Results showed that the highest larvae weight of 282 mg and the shortest growth time of 14 days were achieved at the group of FW stored for 15 days, but shorter storage time (i.e., 2-7 d) had adverse effect on BSFL growth. Short storage time (i.e., 2-4 d) improved protein content of BSFL biomass and prolonged storage time (i.e., 7-10 d) led to the accumulation of fat content. The changes of substrate characteristics and indigenous microorganisms via FW storage time were the main reasons for BSFL growth difference. Lactic acid (LA) accumulation (i.e., 19.84 g/L) in FW storage for 7 days significantly limited the BSFL growth, leading to lowest larvae weight. Both the substrate and BSFL gut contained same bacterial communities (e.g., Klebsiella and Proteus), which exhibited similar change trend with the prolonged storage time. The transfer of Clostridioides from substrate to BSFL gut promoted nutrients digestion and intestinal flora balance with the FW stored for 15 days. Pathogens (e.g., Acinetobacter) in BSFL gut feeding with FW storage time of 7 days led to the decreased digestive function, consistent with the lowest larvae weight. Overall, shorter storage time (i.e., 2-7 d) inhibited the BSFL digestive function and growth performance, while the balance of the substrate nutrients and intestinal flora promoted the BSFL growth when using the FW stored for 15 days.


Subject(s)
Gastrointestinal Microbiome , Larva , Nutritive Value , Animals , Larva/growth & development , Simuliidae/growth & development , Diptera/growth & development , Food Loss and Waste
2.
Nat Genet ; 56(9): 1964-1974, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103648

ABSTRACT

Peas are essential for human nutrition and played a crucial role in the discovery of Mendelian laws of inheritance. In this study, we assembled the genome of the elite vegetable pea cultivar 'Zhewan No. 1' at the chromosome level and analyzed resequencing data from 314 accessions, creating a comprehensive map of genetic variation in peas. We identified 235 candidate loci associated with 57 important agronomic traits through genome-wide association studies. Notably, we pinpointed the causal gene haplotypes responsible for four Mendelian traits: stem length (Le/le), flower color (A/a), cotyledon color (I/i) and seed shape (R/r). Additionally, we discovered the genes controlling pod form (Mendelian P/p) and hilum color. Our study also involved constructing a gene expression atlas across 22 tissues, highlighting key gene modules related to pod and seed development. These findings provide valuable pea genomic information and will facilitate the future genome-informed improvement of pea crops.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Pisum sativum , Quantitative Trait Loci , Pisum sativum/genetics , Phenotype , Polymorphism, Single Nucleotide , Genomics/methods , Haplotypes , Seeds/genetics , Chromosome Mapping , Genetic Variation , Gene Expression Regulation, Plant , Crops, Agricultural/genetics , Genetics, Population
4.
Micromachines (Basel) ; 14(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138381

ABSTRACT

We propose a novel silicon carbide (SiC) self-aligned N-type ion implanted trench MOSFET (NITMOS) device. The maximum electric field in the gate oxide could be effectively reduced to below 3 MV/cm with the introduction of the P-epi layer below the trench. The P-epi layer is partially counter-doped by a self-aligned N-type ion implantation process, resulting in a relatively low specific on-resistance (Ron,sp). The lateral spacing between the trench sidewall and N-implanted region (Wsp) plays a crucial role in determining the performance of the SiC NITMOS device, which is comprehensively studied through the numerical simulation. With the Wsp increasing, the SiC NITMOS device demonstrates a better short-circuit capability owing to the reduced saturation current. The gate-to-drain capacitance (Cgd) and gate-to-drain charge (Qgd) are also investigated. It is observed that both Cgd and Qgd decrease as the Wsp increases, owing to the enhanced screen effect. Compared to the SiC double-trench MOSFET device, the optimal SiC NITMOS device exhibits a 79% reduction in Cgd, a 38% decrease in Qgd, and a 41% reduction in Qgd × Ron,sp. A higher switching speed and a lower switching loss can be achieved using the proposed structure.

5.
Arab J Chem ; 16(5): 104654, 2023 May.
Article in English | MEDLINE | ID: mdl-36777994

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2's proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.

6.
Mol Plant ; 16(4): 694-708, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36772793

ABSTRACT

Comprehensive utilization of cottonseeds is limited by the presence of pigment glands and its inclusion gossypol. The ideal cotton has glandless seeds but a glanded plant, a trait found in only a few Australian wild cotton species, including Gossypium bickii. Introgression of this trait into cultivated species has proved to be difficult. Understanding the biological processes toward pigment gland morphogenesis and the associated underlying molecular mechanisms will facilitate breeding of cultivated cotton varieties with the trait of glandless seeds and glanded plant. In this study, single-cell RNA sequencing (scRNA-seq) was performed on 12 222 protoplasts isolated from cotyledons of germinating G. bickii seeds 48 h after imbibition. Clustered into 14 distinct clusters unsupervisedly, these cells could be grouped into eight cell populations with the assistance of known cell marker genes. The pigment gland cells were well separated from others and could be separated into pigment gland parenchyma cells, secretory cells, and apoptotic cells. By integrating the pigment gland cell developmental trajectory, transcription factor regulatory networks, and core transcription factor functional validation, we established a model for pigment gland formation. In this model, light and gibberellin were verified to promote the formation of pigment glands. In addition, three novel genes, GbiERF114 (ETHYLENE RESPONSE FACTOR 114), GbiZAT11 (ZINC FINGER OF ARABIDOPSIS THALIANA 11), and GbiNTL9 (NAC TRANSCRIPTION FACTOR-LIKE 9), were found to affect pigment gland formation. Collectively, these findings provide new insights into pigment gland morphogenesis and lay the cornerstone for future cotton scRNA-seq investigations.


Subject(s)
Gossypium , Transcriptome , Gossypium/genetics , Transcriptome/genetics , Australia , Plant Breeding , Transcription Factors/genetics , Gene Expression Regulation, Plant/genetics
7.
Plant Commun ; 4(1): 100421, 2023 01 09.
Article in English | MEDLINE | ID: mdl-35949167

ABSTRACT

The pigment gland is a morphological characteristic of Gossypium and its related genera. Gossypium bickii (G1) is characterized by delayed pigment gland morphogenesis in the cotyledons. In this study, a reference-grade genome of G1 was generated, and comparative genomics analysis showed that G1 was closest to Gossypium australe (G2), followed by A- and D-genome species. Two large fragment translocations in chromosomes 5 and 13 were detected between the G genome and other Gossypium genomes and were unique to the G1 and G2 genomes. Compared with the G2 genome, two large fragment inversions in chromosomes 12 and 13 were detected in G1. According to the phylogeny, divergence time, and similarity analysis of nuclear and chloroplast genomes, G1 was formed by hybridization between Gossypium sturtianum (C1) and a common ancestor of G2 and Gossypium nelsonii (G3). The coordinated expression patterns of pigment gland formation (GoPGF) and gossypol biosynthesis genes in G1 were verified to be consistent with its phenotype, and nine genes that were related to the process of pigment gland formation were identified. A novel gene, GbiCYP76B6, regulated by GoPGF, was found to affect gossypol biosynthesis. These findings offer insights into the origin and evolution of G1 and its mechanism of pigment gland formation and gossypol biosynthesis.


Subject(s)
Gossypium , Gossypol , Gossypium/genetics , Hybridization, Genetic , Cell Nucleus , Evolution, Molecular
8.
RSC Adv ; 12(41): 26733-26743, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36320847

ABSTRACT

Graphene oxide (GO) shows a remarkable reinforcing effect in the application of cement composite engineering while it also harms the workability of fresh cement slurry. Hydroxylated graphene (HO-G) can effectively avoid the severe adverse effects on the fluidity of cement slurry as happened in the case of GO, but the enhancement of the flexural strength of cement composites is not as good as that of GO. As such, considering the advantages and disadvantages of these two nanomaterials in cement-based composite applications, this study investigated the effect of hybrid GO/HO-G with various ratios on the macro-properties and microstructure of cement composites in comparison with that of individual GO and HO-G. The results revealed a better synergistic improvement on the strength and durability of mortar by hybrid GO/HO-G in comparison with the individual effects of GO or HO-G. In particular, when 0.015 wt% GO and 0.015 wt% HO-G were combined as multiple-additives added into cement mortar, the improvement ratio of compressive strength and chloride migration resistance at 28 days were 40.2% and 21.9%, which were far better than those of the mortar containing a single additive (0.03 wt% GO or 0.03 wt% HO-G). Additionally, the hybrid GO/HO-G not only could greatly reduce the degrada-tion of the fluidity of mortar as happened in the case of GO, but also further reinforced the flexural strength of cement composites when compared with its HO-G counterpart. The combination of these two nanofillers as multiple-nanoadditives for cement reinforcement is quite promising due to their synergistic effect and possesses strong potential for reinforcing and functionalizing cement composites.

9.
Plants (Basel) ; 11(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35336610

ABSTRACT

Gossypol, a terpenoid compound mainly synthesized in the cotton roots, acts as a phytoalexin in protecting the plants from biotic stress. Roots are critical for both the secondary metabolism and the growth of the plant. Light plays an important role in plant growth and material metabolism, however, the effect of root illumination (RI) on the cotton seedling growth and gossypol metabolism remains unclear. In the present study, the cotton genetic standard line TM-1 and four pairs of near-isogenic lines (NILs) were used as materials to study the impact of RI on cotton seedlings. Results showed that, compared with the cotton seedlings cultivated without RI, the photosynthetic rate, leaf area, and dry weight of roots and leaves were significantly increased, while the gossypol content in leaves and roots was significantly reduced in seedlings cultivated with RI. GO and KEGG enrichment analysis of the differentially expressed genes (DEGs) with and without RI both indicated that photosynthesis and terpenoid biosynthesis-related GO terms and pathways were significantly enriched, the expression profile confirmed that RI positively regulated the photosynthesis system and negatively affected the gossypol biosynthesis pathway in roots. This study revealed the effects of RI on seedlings' growth and gossypol biosynthesis in upland cotton, and provided important insights for the engineering of cotton with low gossypol accumulation.

10.
PLoS One ; 17(3): e0265629, 2022.
Article in English | MEDLINE | ID: mdl-35320301

ABSTRACT

BACKGROUND: Aging-related hypogonadism in men is related to the deterioration of overall health. Those with this disease rarely receive treatment. The hypertriglyceridemic waist (HTGW) phenotype is a tool for predicting abnormalities of cardiovascular metabolism. However, the relationship between the HTGW phenotype and hypogonadism remains undetermined. This study aimed to determine the association between HTGW phenotype and hypogonadism in different age groups. METHODS: Data of this cross-sectional study were obtained from MJ Health Screening Center in Taiwan from 2007 to 2016. The HTGW phenotype was divided into four categories based on whether the waist circumference (WC) and triglyceride levels were normal. WC of <90 cm and triglyceride level of <150 mg/dL were defined as normal. Hypogonadism was defined as a testosterone level of <300 ng/dL. RESULTS: Overall, 6442 male participants were divided into three age groups: <50, 50-64, and ≥65 years (n = 4135, 1958, and 349; age groups 1, 2, and 3, respectively). The overall prevalence of hypogonadism was 10.6%. In group 1, participants with HTGW (odds ratio, 1.98; 95% confidence interval (CI), 1.354-2.896) had a higher risk of hypogonadism than those with normal WC and normal triglyceride levels after adjustment for body mass index and fasting blood glucose level. In group 2, participants with HTGW (odds ratio, 1.873; 95% CI, 1.099-3.193) had an increased risk of hypogonadism after adjustment for body mass index, fasting blood glucose level, Cholesterol levels, high-density lipoprotein (HDL) levels, low-density lipoprptein (LDL) levels and smoking status. However, no relationship was observed between HTGW phenotype and hypogonadism in group 3. CONCLUSION: HTGW phenotype was highly associated with hypogonadism in Taiwanese adult men. More attention should be paid to men aged <50 years with HTGW.


Subject(s)
Hypertriglyceridemic Waist , Hypogonadism , Blood Glucose , Cross-Sectional Studies , Female , Humans , Hypertriglyceridemic Waist/complications , Hypertriglyceridemic Waist/epidemiology , Hypogonadism/complications , Hypogonadism/epidemiology , Male , Phenotype , Risk Factors , Triglycerides , Waist Circumference
11.
Langmuir ; 37(43): 12616-12628, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34672608

ABSTRACT

Development of high-efficiency oxygen reduction reaction (ORR) catalysts under neutral conditions has made little research progress. In this work, we synthesized a three-dimensional porous N/P codoped carbon nanosheet composites (CNP@PNS) by high-temperature thermal treatment of dicyandiamide, starch, and triphenylphosphine and subsequent porous structure-making treatment using the NaCl molten salt template. In the neutral solution, the electrocatalytic performance of the CNP@PNS-4 catalyst exhibits an onset potential of 0.98 V (vs reversible hydrogen electrode) and a half-wave potential of 0.91 V for ORR, which greatly surpasses commercial Pt/C (40%). Three kinds of neutral metal-air batteries (Zn-air, Al-air, and Fe-air) using the prepared samples as cathodic catalysts were constructed, corresponding to the maximum power density of 120.2, 78.3, and 18.9 mW·cm-2, respectively. Also, they reveal outstanding discharge stability under different current densities. The density functional theory calculation depicts the reduction of the free energy of the determining step and subsequent decline of the overpotential for ORR.

12.
Microsyst Nanoeng ; 7: 51, 2021.
Article in English | MEDLINE | ID: mdl-34567764

ABSTRACT

The AlGaN/GaN-based sensor is a promising POCT (point-of-care-testing) device featuring miniaturization, low cost, and high sensitivity. BNP is an effective protein biomarker for the early diagnosis of HF (heart failure). In this work, a novel AlGaN/GaN device with the Kelvin connection structure and the corresponding detection technique was proposed. This technique can effectively suppress the background noise and improve the SNR (signal-to-noise ratio). A BNP detection experiment was carried out to verify the effectiveness of this technique. It is shown that compared with that of the traditional detection method, the LOD (limit of detection) was improved from 0.47 ng/mL to 1.29 pg/mL. The BNP detection experiment was also carried out with a traditional electrochemical Au-electrode sensor with the same surface functionalization steps. The AlGaN/GaN sensor showed a better LOD than the Au-electrode sensor. Moreover, the influence of AlGaN/GaN sensor package on background noise was investigated with the mechanism of the noise source revealed. Finally, based on the optimized package, the optimal SNR quiescent operating point of the AlGaN/GaN sensor was determined. By biasing the sensor at the optimal quiescent operating point and immobilizing the magnetic beads with anti-BNP on the gate of the AlGaN/GaN sensor, the LOD for BNP detection was further improved to 0.097 pg/mL.

13.
Microsyst Nanoeng ; 7: 57, 2021.
Article in English | MEDLINE | ID: mdl-34570839

ABSTRACT

[This corrects the article DOI: 10.1038/s41378-021-00278-7.].

14.
ACS Appl Mater Interfaces ; 13(38): 45394-45405, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34519493

ABSTRACT

Searching for high-quality air electrode catalysts is the long-term goal for the practical application of Zn-air batteries. Here, a series of coexistent composite materials (CoNi/NHCS-TUC-x) of cobalt-nickel supported on nitrogen-doped hollow spherical carbon and tubular carbon are obtained using a simple pyrolysis strategy. Co and Ni in the composites are mainly present in the form of alloy nanoparticles, M-Nx and M-Cx (M = Co or Ni) species, with high oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) electroactivity. The materials containing different proportions of spherical carbon and tubular carbon obtained by simply adjusting the raw materials for generating tubular carbon exhibit interesting bifunctional performance: samples with an abundant tubular content have the highest ORR onset potential (0.91 V vs reversible hydrogen electrode), while those with a rich spherical content have the highest ORR current density (5.13 mA·cm-2). Furthermore, CoNi/NHCS-TUC-3 provides the lowest potential difference (ΔE = Ej=10 - E1/2) of 0.806 V. We then test the potential possibility of CoNi/NHCS-TUC-3 as an air electrode for primary and rechargeable Zn-air batteries. The primary battery delivers an open-circuit potential of 1.59 V, a peak power density of 361.8 mA·cm-2, and a specific capacity of 756.5 mA h·gZn-1. The rechargeable battery could be cycled stably for more than 55 h at 10 mA·cm-2. These characteristics make CoNi/NHCS-TUC-3 a superior electrocatalyst for both the ORR and OER, as well as a suitable bifunctional electrode applied to a rechargeable Zn-air battery.

15.
ACS Appl Mater Interfaces ; 13(29): 34962-34972, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34269055

ABSTRACT

Ferromagnetic semiconductors with structural flexibility are an indispensable feature for future flexible spin-electronic applications. In this case, we introduce magnetic ingredients into an organic semiconductor, namely, pentacene, to form a ferromagnetic organic semiconductor (FOS). The first observation for ferromagnetic Ni-doped pentacene semiconductors at room temperature in the field of semiconductor spintronics is reported in this article. To date, the mechanism of FOSs with ferromagnetism is not understood yet, especially when their Curie temperature is enhanced above room temperature. Here, we demonstrate dopants of Ni atoms and the modulation of the growth temperature in the FOS films to achieve room-temperature ferromagnetic properties in a series of FOS films, one of which has a maximum coercivity of 257.6 Oe. The spin-exchange interaction between a Ni atom and a pentacene molecule is detected through the magnetic hysteresis obtained using a superconducting quantum interference device magnetometer. We verify the effectiveness of this spin coupling through magnetic force microscopy, Raman spectroscopy, scanning Kelvin probe microscopy, and theoretical simulation. A model for the indirect spin coupling between Ni atoms is proposed for the mechanism of room-temperature ferromagnetic ordering of spins due to the exchange force indirectly. We believe that the π-electrons of pentacene molecules at the triple state for this model can support the spin coupling of electrons of Ni atoms. Our findings facilitate the development of brand-new spintronic devices with structural flexibility and room-temperature ferromagnetism.

16.
Materials (Basel) ; 14(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572683

ABSTRACT

This paper demonstrated the impact of process conditions on the surge current capability of 1.2 kV SiC junction barrier Schottky diode (JBS) and merged PiN Schottky diode (MPS). The influence of ohmic contact and defect density produced by implantation was studied in the simulation. The device fabricated with high temperature implantation had less defect density in the implant region compared with room temperature implantation, which contributed to higher hole injection in surge current mode and 20% surge capability improvement. In addition, with lower P+ ohmic contact resistance, the device had higher surge capability. When compared to device fabrication with a single Schottky metal layer in the device active area, adding additional P+ ohmic contact on top of the P+ regions in the device active area resulted in the pn junctions sharing a greater portion of surge current, and improved the devices' surge capability by ~10%.

17.
BMJ Open ; 11(1): e040424, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441354

ABSTRACT

OBJECTIVES: This study examined the associations between the Second-Generation Cessation Payment Scheme (SCPS) and the use of smoking cessation treatments. Furthermore, these associations were compared between light and heavy smokers in Taiwan. DESIGN: This study had a cross-sectional design. SETTING: Data were obtained from the Taiwan Adult Smoking Behaviour Surveillance System 2010-2011 and 2013-2014; data for each year consisted of a nationally representative sample of adults aged 18 years and older. PARTICIPANTS: Current smokers who had either quit or made a serious attempt to quit smoking were selected for the analysis. PRIMARY OUTCOME MEASURE: The primary outcome measure was the use of a smoking cessation clinic or pharmacy in a twice daily to quit smoking. RESULTS: According to multivariate analysis, the SCPS was positively associated with the combined use of a smoking cessation clinic and a pharmacy (OR=3.947; 95% CI: 1.359 to 11.463) when individual-level predictors (gender, age, education level, marital status, monthly household income, daily cigarette consumption, smoking status and self-reported health) were controlled. Heavy smokers showed a significant increase in the sole use of a pharmacy (OR=1.676; 95% CI: 1.094 to 2.569) and combined use of a smoking cessation clinic and pharmacy (OR=8.984; 95% CI: 1.914 to 42.173) after the SCPS was introduced. In addition, when related factors were controlled, the use of smoking cessation services was more frequent among heavy smokers than light smokers, including any treatment (OR=1.594; 95% CI: 1.308 to 1.942), a smoking cessation clinic (OR=1.539; 95% CI: 1.232 to 1.922), a pharmacy (OR=1.632; 95% CI: 1.157 to 2.302) and the combination of a smoking cessation clinic and pharmacy (OR=4.608; 95% CI: 1.331 to 15.949) . CONCLUSIONS: The SCPS subsidisation policy increased the use of smoking cessation treatments, particularly among heavy smokers.


Subject(s)
Smoking Cessation , Adolescent , Adult , Cross-Sectional Studies , Government , Humans , Policy , Taiwan/epidemiology
18.
Zhongguo Zhong Yao Za Zhi ; 45(17): 4120-4128, 2020 Sep.
Article in Chinese | MEDLINE | ID: mdl-33164396

ABSTRACT

As a prescription for promoting blood circulation and removing blood stasis, Taohong Siwu Decoction(THSWD) has certain effects in delaying the progression of renal fibrosis. However, as a traditional Chinese medicine compound containing many monomer components, it has been a research hotspot in the field of exploring the research methods and targets for the complex pathological process. The method of activating blood circulation and removing blood stasis has certain clinical effect in retarding the process of IgA nephropathy(IgAN) fibrosis, but the mechanism of action is still unclear. In this study, the network pharmacology method was used to investigate the active ingredients, targets and molecular mechanisms of THSWD in the intervention of IgAN fibrosis. On this basis, in vitro experiments were conducted to verify the effect of THSWD on the expression of ERK factor in BALB/c 3 T3 cells. The active ingredients and targets in THSWD were collected through the TCMSP. Sixty-one active ingredients and 240 targets including luteolin and quercetin were screened, and 185 targets were obtained by intersecting with CTD database to search IgAN related targets. Cytoscape software and STRING database were used to construct "THSWD-active ingredients-targets" network and protein-protein interaction network, and 69 core targets were screened. In DAVID's GO enrichment analysis and KEGG pathway analysis of the core targets and cell experiments, the results showed that ERK was an important factor for THSWD to interfere with IgAN fibrosis, and THSWD intervention could significantly decrease cell activity, ERK1/2 mRNA expression, and p-ERK1/2 protein expression. This study preliminarily revealed that THSWD may delay the growth of fibroblasts by affecting ERK factor and its phosphorylation level.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Fibroblasts , Protein Interaction Maps
19.
Materials (Basel) ; 13(11)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545381

ABSTRACT

A comparative study of surge current reliability of 1200 V/5 A 4H-SiC (silicon carbide) MPS (Merged PiN Schottky) diodes with different technologies is presented. The influences of device designs in terms of electrical and thermal aspects on the forward conduction performance and surge current capability were studied. Device forward characteristics were simulated and measured. Standard single-pulse surge current tests and thermal impedance measurements were carried to show their surge capability and thermal design differences. An advanced thermal RC (thermal resistance-capacitance) model, with the consideration of current distribution non-uniformity effects, is proposed to accurately calculate the device junction temperature during surge events. It was found that a thinner substrate and a hexagonal layout design are beneficial to the improvement of the bipolar conduction performance in high current mode, as well as the surge current capability. The thinner substrate design also has advantages on thermal aspects, as it presents the lowest thermal resistance. The calculated failure temperature during the surge tests is consistent with the aluminum melting phenomenon, which is regarded as the failure mechanism. It was demonstrated that, for a SiC MPS diode, higher bipolar conduction performance is conducive to restraining the joule heat, and a lower thermal resistance design is able to accelerate the heat dissipation and limit the junction temperature during surge events. In this way, the MPS diode using a thinner substrate and advanced layout design technology is able to achieve 60% higher surge current density capability compared to the other technologies.

20.
Materials (Basel) ; 13(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316694

ABSTRACT

Wide bandgap gallium nitride (GaN)-based devices have attracted a lot of attention in optoelectronics, power electronics, and sensing applications. AlGaN/GaN based sensors, featuring high-density and high-mobility two-dimensional electron gas (2DEG), have been demonstrated to be effective chemical sensors and biosensors in the liquid environment. One of the key factors limiting the wide adoption of the AlGaN/GaN liquid sensor is the package reliability issue. In this paper, the reliability of three types of sensor packaging materials (SiO2/Si3N4, PI, and SiO2/Si3N4/PI) on top of 5-µm metal are tested in Phosphate buffer saline (PBS) solution. By analyzing the I-V characteristics, it is found that the leakage currents within different regimes follow distinct leakage models, whereby the key factors limiting the leakage current are identified. Moreover, the physical mechanisms of the package failure are illustrated. The failure of the SiO2/Si3N4 package is due to its porous structure such that ions in the solution can penetrate into the packaging material and reduce its resistivity. The failure of the PI package at a relatively low voltage (<3 V) is mainly due to the poor adhesion of PI to the AlGaN surface such that the solution can reach the electrode by the "lateral drilling" effect. The SiO2/Si3N4/PI package achieves less than 10 µA leakage current at 5 V voltage stress because it combines the advantages of the SiO2/Si3N4 and the PI packages. The analysis in this work can provide guidelines for the design and failure mechanism analysis of packaging materials.

SELECTION OF CITATIONS
SEARCH DETAIL