Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Plant Commun ; 5(1): 100681, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37660253

ABSTRACT

Bananas (Musa spp.) are monocotyledonous plants with high genetic diversity in the Musaceae family that are cultivated mainly in tropical and subtropical countries. The fruits are a popular food, and the plants themselves have diverse uses. Four genetic groups (genomes) are thought to have contributed to current banana cultivars: Musa acuminata (A genome), Musa balbisiana (B genome), Musa schizocarpa (S genome), and species of the Australimusa section (T genome). However, the T genome has not been effectively explored. Here, we present the high-quality TT genomes of two representative accessions, Abaca (Musa textilis), with high-quality natural fiber, and Utafun (Musa troglodytarum, Fe'i group), with abundant ß-carotene. Both the Abaca and Utafun assemblies comprise 10 pseudochromosomes, and their total genome sizes are 613 Mb and 619 Mb, respectively. Comparative genome analysis revealed that the larger size of the T genome is likely attributable to rapid expansion and slow removal of transposons. Compared with those of Musa AA or BB accessions or sisal (Agava sisalana), Abaca fibers exhibit superior mechanical properties, mainly because of their thicker cell walls with a higher content of cellulose, lignin, and hemicellulose. Expression of MusaCesA cellulose synthesis genes peaks earlier in Abaca than in AA or BB accessions during plant development, potentially leading to earlier cellulose accumulation during secondary cell wall formation. The Abaca-specific expressed gene MusaMYB26, which is directly regulated by MusaMYB61, may be an important regulator that promotes precocious expression of secondary cell wall MusaCesAs. Furthermore, MusaWRKY2 and MusaNAC68, which appear to be involved in regulating expression of MusaLAC and MusaCAD, may at least partially explain the high accumulation of lignin in Abaca. This work contributes to a better understanding of banana domestication and the diverse genetic resources in the Musaceae family, thus providing resources for Musa genetic improvement.


Subject(s)
Musa , Musa/genetics , Genome, Plant , Lignin
2.
Plant Commun ; 5(2): 100766, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37974402

ABSTRACT

Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.


Subject(s)
Fusarium , Musa , Musa/genetics , Fusarium/genetics , Haplotypes , Gene Expression Profiling , Transcriptome
3.
Genes (Basel) ; 14(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136937

ABSTRACT

Endogenous reference genes play a crucial role in the qualitative and quantitative PCR detection of genetically modified crops. Currently, there are no systematic studies on the banana endogenous reference gene. In this study, the MaSPS1 gene was identified as a candidate gene through bioinformatics analysis. The conservation of this gene in different genotypes of banana was tested using PCR, and its specificity in various crops and fruits was also examined. Southern blot analysis showed that there is only one copy of MaSPS1 in banana. The limit of detection (LOD) test showed that the LOD of the conventional PCR method is approximately 20 copies. The real-time fluorescence quantitative PCR (qPCR) method also exhibited high specificity, with a LOD of approximately 10 copies. The standard curve of the qPCR method met the quantitative requirements, with a limit of quantification (LOQ) of 1.14 × 10-2 ng-about 20 copies. Also, the qPCR method demonstrated good repeatability and stability. Hence, the above results indicate that the detection method established in this study has strong specificity, a low detection limit, and good stability. It provides a reliable qualitative and quantitative detection system for banana.


Subject(s)
Musa , Musa/genetics , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Real-Time Polymerase Chain Reaction/methods
5.
ISME J ; 17(6): 931-942, 2023 06.
Article in English | MEDLINE | ID: mdl-37037925

ABSTRACT

Beneficial interactions between plants and rhizosphere microorganisms are key determinants of plant health with the potential to enhance the sustainability of agricultural practices. However, pinpointing the mechanisms that determine plant disease protection is often difficult due to the complexity of microbial and plant-microbe interactions and their links with the plant's own defense systems. Here, we found that the resistance level of different banana varieties was correlated with the plant's ability to stimulate specific fungal taxa in the rhizosphere that are able to inhibit the Foc TR4 pathogen. These fungal taxa included members of the genera Trichoderma and Penicillium, and their growth was stimulated by plant exudates such as shikimic acid, D-(-)-ribofuranose, and propylene glycol. Furthermore, amending soils with these metabolites enhanced the resistance of a susceptible variety to Foc TR4, with no effect observed for the resistant variety. In total, our findings suggest that the ability to recruit pathogen-suppressive fungal taxa may be an important component in determining the level of pathogen resistance exhibited by plant varieties. This perspective opens up new avenues for improving plant health, in which both plant and associated microbial properties are considered.


Subject(s)
Agriculture , Rhizosphere , Soil , Fungi/genetics , Plant Roots/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Soil Microbiology
6.
Front Plant Sci ; 14: 1125375, 2023.
Article in English | MEDLINE | ID: mdl-36866367

ABSTRACT

Introduction: Polyphenol oxidases (PPOs), which are widely present in plants, play an important role in the growth, development, and stress responses. They can catalyze the oxidization of polyphenols and result in the browning of damaged or cut fruit, which seriously affects fruit quality and compromises the sale of fruit. In banana (Musa acuminata, AAA group), 10 PPO genes were determined based on the availability of a high-quality genome sequence, but the role of PPO genes in fruit browning remains unclear. Methods: In this study, we analyzed the physicochemical properties, gene structure, conserved structural domains, and evolutionary relationship of the PPO gene family of banana. The expression patterns were analyzed based on omics data and verified by qRT-PCR analysis. Transient expression assay in tobacco leaves was used to identify the subcellular localization of selected MaPPOs, and we analyzed the polyphenol oxidase activity using recombinant MaPPOs and transient expression assay. Results and discussion: We found that more than two-thirds of the MaPPO genes had one intron, and all contained three conserved structural domains of PPO, except MaPPO4. Phylogenetic tree analysis revealed that MaPPO genes were categorized into five groups. MaPPOs did not cluster with Rosaceae and Solanaceae, indicating distant affinities, and MaPPO6/7/8/9/10 clustered into an individual group. Transcriptome, proteome, and expression analyses showed that MaPPO1 exhibits preferential expression in fruit tissue and is highly expressed at respiratory climacteric during fruit ripening. Other examined MaPPO genes were detectable in at least five different tissues. In mature green fruit tissue, MaPPO1 and MaPPO6 were the most abundant. Furthermore, MaPPO1 and MaPPO7 localized in chloroplasts, and MaPPO6 was a chloroplast- and Endoplasmic Reticulum (ER)-localized protein, whereas MaPPO10 only localized in the ER. In addition, the enzyme activity in vivo and in vitro of the selected MaPPO protein showed that MaPPO1 had the highest PPO activity, followed by MaPPO6. These results imply that MaPPO1 and MaPPO6 are the main contributors to banana fruit browning and lay the foundation for the development of banana varieties with low fruit browning.

7.
Plant Physiol Biochem ; 194: 643-650, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36535104

ABSTRACT

Fruit ripening is the last phase of fruit growth and development. The initiation and progression of fruit ripening are highly modulated by a plethora of key genes, such as transcription factor (TF) genes. The WRKY gene family is a large group of TFs that play important roles in various cellular processes; nevertheless, the role of WRKY TF on fruit ripening remains enigmatic. Here, we report that a banana WRKY TF, MaWRKY49 functions in ethylene-induced fruit ripening by modulating the expression of fruit softening-related genes. We found that the expression of MaWRKY49 is highly induced by ethephon and inhibited by 1-methylcyclopropene, which is synchronous with the ripening process. Moreover, based on transcriptome data on fruit ripening, two pectate lyase (PL) genes that are involved in fruit softening were determined, and their expression pattern is also consistent with the fruit ripening process. Yeast one-hybrid and dual-luciferase assay confirmed that MaWRKY49 activated the transcription of two PL genes. In addition, transient overexpression of MaWRKY49 in banana fruits can apparently accelerate fruit ripening processs. Taken together, our findings indicate that MaWRKY49 acts as a potential modulator of fruit ripening by direct regulation of PL expression. This work contributes to developing the technology for improving the shelf-life of banana fruit.


Subject(s)
Musa , Transcription Factors , Transcription Factors/metabolism , Musa/genetics , Musa/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Plant Proteins/metabolism
8.
Food Chem ; 403: 134380, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36194931

ABSTRACT

Banana fruits have attracted considerable attention for health-promoting effects attributed to ubiquitous functional metabolites. However, genotype-dependent accumulation patterns of carotenoids in banana remain largely unclear. Here, we performed a systematic metabolomic investigation of 18 banana cultivars of the AAA, AAB, or ABB genome groups. Our results indicate that the levels of soluble sugars increase during postharvest ripening regardless of genotype, whereas amino acids (AAs) and tricarboxylic acid (TCA) cycle-derived organic acids display genotype-dependent patterns. The levels of AAs derived from the glycolytic pathway increased, whereas those derived from the TCA cycle significantly decreased during ripening. The carotenoid composition in banana pulp was genotype-specific, and the contents of α-carotene were the highest in AAA-genome bananas. Moreover, high α-carotene and ß-carotene contents in banana were correlated with elevated levels of TCA cycle-derived AAs and decreased levels of glycolysis-derived AAs. Taken together, these findings provide a comprehensive understanding of genotype-associated carotenoid accumulation, thereby facilitating the breeding of future high carotenoid banana cultivars.


Subject(s)
Musa , Musa/chemistry , Plant Breeding , Carotenoids/analysis , Fruit/chemistry , Genotype
9.
J Fungi (Basel) ; 8(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36547607

ABSTRACT

Banana cultivars with the AAB genome group comprise diverse subgroups, such as Plantain, Silk, Iholena, and Pisang Raja, among others, which play an important role in food security in many developing countries. Some of these cultivars are susceptible to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), the most destructive pathogen threatening banana production worldwide, and some of them are still largely unknown. We evaluated the resistance of 37 banana genotypes, including Plantain, Silk, Iholena, Maia Maoli/Popoulu, Pisang Raja, Pome, and Mysore, to Foc TR4 under both greenhouse and field conditions. Genotypes from the Silk and Iholena subgroups were highly susceptible to Foc TR4. Pome and Mysore showed resistance and intermediate resistance, respectively. However, Pisang Raja ranged from susceptible to intermediate resistance. One cultivar from the Maia Maoli/Popoulu subgroup was highly susceptible, while the other displayed significant resistance. Most Plantain cultivars exhibited high resistance to Foc TR4, except two French types of cultivar, 'Uganda Plantain' and 'Njombe N°2', which were susceptible. The susceptibility to Foc TR4 of some of the AAB genotypes evaluated, especially Plantain and other cooking bananas, indicates that growers dependent on these varieties need to be included as part of the prevention and integrated Foc TR4 management strategies, as these genotypes play a crucial role in food security and livelihoods.

10.
Plant Dis ; 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35467941

ABSTRACT

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), has been considered as the most devastating disease affecting bananas (Musa spp.) worldwide. A highly virulent strain of Foc, known as tropical race 4 (TR4), has been detected in the southeast Asia in the 1990s, and has since spread to western Asia, Australia, the Middle East, southern Africa, and South America (Viljoen et al. 2020). Foc TR4 can cause severe yield losses in Cavendish (AAA), Gros Michel (AAA), Silk (AAB), Pisang Awak (ABB) and Bluggoe (ABB) bananas (Ploetz et al. 2006). However, cooking bananas such as plantain (AAB) and Matooke (AAA) bananas, appear to be resistant (Zuo et al. 2017). Iholena bananas (AAB), a subgroup of varieties related to plantains (also known as Pacific plantains), is an important staple food in the Pacific Islands where it was domesticated. It is also popular in Peru, probably due to its nutritional value (Kepler et al. 2011) and is wildly cultivated in other South American countries (Dita et al. 2013). In December 2019, typical symptoms of banana Fusarium wilt were observed on Iholena accession 'Pacific Plantain' (ITC0210) in experimental fields located in Dongguan, Guangdong Province of China. The symptoms included leaf yellowing and pseudostem splitting. The vascular tissue inside the pseudostems was dark red to brown, and the inner rhizomes yellowish-brown. Vascular tissues from three diseased plants were sampled aseptically and placed on potato dextrose agar (PDA) containing 0.05 g/liter kanamycin. Fungal colonies typical of F. oxysporum developed rapidly, with purple-tinged white aerial mycelia and an abundance of microconidia borne in false heads on short microconidia (Nelson et al. 1983). Chlamydospores were produced singly or in pairs in hyphae and macroconidia. Molecular identification was performed using Foc race 4-specific primers (Lin et al. 2009), Foc TR4-specific primers (Dita et al. 2010), Foc race 1 and Foc STR4-specific primers (Ndayihanzamaso et al. 2020). Amplicons of expected sizes were obtained for Foc TR4 and race 4, but not for Foc race 1 and STR4. Sequencing of the ITS and 18S rDNA from the three Iholena isolates and BLAST result showed a 100% similarity to the Foc TR4 reference sequences in GenBank (Foc II5, PRJNA73539 and PRJNA56513) to prove that the isolates were Foc TR4. Pathogenicity of the three isolates from Iholena bananas was determined by infecting 4-month-old Cavendish cv. 'Grand Nain' bananas and three Iholena accessions, 'Pacific Plantain' 'Tigua' and 'Uzakan', under greenhouse conditions by root immersion in a Foc conidial suspension and soil drenching at 106 conidia/ml (Dita, 2010). Control plants were treated with sterile distilled water. Three replications of five plantlets were used for each accession. After 35 days, the inoculated plantlets developed typical Fusarium wilt symptoms such as yellowing of the older leaves and discoloration of the inner rhizome. The control plants did not develop symptoms. To complete Koch's postulates, the fungus was re-isolated from inoculated plants and identified as Foc TR4 by PCR (Dita et al, 2010). The susceptibility of 'Tigua' and 'Uzakan' was also confirmed in Foc TR4-infested field trials, with both accessions developing severe Fusarium wilt symptoms. The susceptibility of Iholena bananas to Foc TR4 is of significant concern to all countries where this subgroup is cultivated for major food source, including Peru and other South American countries.

11.
PeerJ ; 10: e12664, 2022.
Article in English | MEDLINE | ID: mdl-35036088

ABSTRACT

The CRISPR/Cas9-mediated genome editing system has been used extensively to engineer targeted mutations in a wide variety of species. Its application in banana, however, has been hindered because of the species' triploid nature and low genome editing efficiency. This has delayed the development of a DNA-free genome editing approach. In this study, we reported that the endogenous U6 promoter and banana codon-optimized Cas9 apparently increased mutation frequency in banana, and we generated a method to validate the mutation efficiency of the CRISPR/Cas9-mediated genome editing system based on transient expression in protoplasts. The activity of the MaU6c promoter was approximately four times higher than that of the OsU6a promoter in banana protoplasts. The application of this promoter and banana codon-optimized Cas9 in CRISPR/Cas9 cassette resulted in a fourfold increase in mutation efficiency compared with the previous CRISPR/Cas9 cassette for banana. Our results indicated that the optimized CRISPR/Cas9 system was effective for mutating targeted genes in banana and thus will improve the applications for basic functional genomics. These findings are relevant to future germplasm improvement and provide a foundation for developing DNA-free genome editing technology in banana.


Subject(s)
Gene Editing , Musa , Gene Editing/methods , CRISPR-Cas Systems/genetics , Musa/genetics , Mutation , Mutagenesis, Site-Directed
12.
Angew Chem Int Ed Engl ; 60(42): 22990-22995, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34414652

ABSTRACT

High-energy-density lithium (Li) metal batteries suffer from a short lifespan owing to apparently ceaseless inactive Li accumulation, which is accompanied by the consumption of electrolyte and active Li reservoir, seriously deteriorating the cyclability of batteries. Herein, a triiodide/iodide (I3 - /I- ) redox couple initiated by stannic iodide (SnI4 ) is demonstrated to reclaim inactive Li. The reduction of I3 - converts inactive Li into soluble LiI, which then diffuses to the cathode side. The oxidation of LiI by the delithiated cathode transforms cathode into the lithiation state and regenerates I3 - , reclaiming Li ion from inactive Li. The regenerated I3 - engages the further redox reactions. Furthermore, the formation of Sn mitigates the corrosion of I3 - on active Li reservoir sacrificially. In working Li | LiNi0.5 Co0.2 Mn0.3 O2 batteries, the accumulated inactive Li is significantly reclaimed by the reversible I3 - /I- redox couple, improving the lifespan of batteries by twice. This work initiates a creative solution to reclaim inactive Li for prolonging the lifespan of practical Li metal batteries.

13.
BMC Plant Biol ; 21(1): 125, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648452

ABSTRACT

BACKGROUND: Banana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musa spp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach. RESULTS: A total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed. CONCLUSIONS: The results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


Subject(s)
Musa/growth & development , Musa/genetics , Plant Stems/growth & development , Plant Stems/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gibberellins/metabolism , Metabolome , Phenotype , Plant Growth Regulators/metabolism , Real-Time Polymerase Chain Reaction , Transcriptome
14.
BMC Plant Biol ; 21(1): 97, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596830

ABSTRACT

BACKGROUND: Banana is a tropical fruit with a high economic impact worldwide. Cold stress greatly affects the development and production of banana. RESULTS: In the present study, we investigated the functions of MaMAPK3 and MaICE1 involved in cold tolerance of banana. The effect of RNAi of MaMAPK3 on Dajiao (Musa spp. 'Dajiao'; ABB Group) cold tolerance was evaluated. The leaves of the MaMAPK3 RNAi transgenic plants showed wilting and severe necrotic symptoms, while the wide-type (WT) plants remained normal after cold exposure. RNAi of MaMAPK3 significantly changed the expressions of the cold-responsive genes, and the oxidoreductase activity was significantly changed in WT plants, while no changes in transgenic plants were observed. MaICE1 interacted with MaMAPK3, and the expression level of MaICE1 was significantly decreased in MaMAPK3 RNAi transgenic plants. Over-expression of MaICE1 in Cavendish banana (Musa spp. AAA group) indicated that the cold resistance of transgenic plants was superior to that of the WT plants. The POD P7 gene was significantly up-regulated in MaICE1-overexpressing transgenic plants compared with WT plants, and the POD P7 was proved to interact with MaICE1. CONCLUSIONS: Taken together, our work provided new and solid evidence that MaMAPK3-MaICE1-MaPOD P7 pathway positively improved the cold tolerance in monocotyledon banana, shedding light on molecular breeding for the cold-tolerant banana or other agricultural species.


Subject(s)
Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase 3/metabolism , Musa/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Cold Temperature , Cold-Shock Response , Mitogen-Activated Protein Kinase 3/genetics , Musa/genetics , Musa/growth & development , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Transcription Factors/genetics
16.
Genes (Basel) ; 11(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33317074

ABSTRACT

Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.


Subject(s)
Microsatellite Repeats/genetics , Musa/genetics , DNA, Plant/genetics , Genetic Variation/genetics , Genetics, Population/methods , Genome, Plant/genetics , Genome-Wide Association Study/methods , Genomics/methods , Musa/classification , Phylogeny , Polymorphism, Genetic/genetics , Reproducibility of Results , Species Specificity
17.
BMC Plant Biol ; 20(1): 402, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32867686

ABSTRACT

BACKGROUND: Pollen formation and development is important for crop fertility and is a key factor for hybrid development. Previous reports have indicated that Arabidopsis thaliana TAPETUM DETERMINANT1 (AtTPD1) and its rice (Oryza sativa) homolog, OsTPD1-like (OsTDL1A), are required for cell specialization and greatly affect pollen formation and development. Little is known about the role of the TPD1 homolog in banana pollen development. RESULTS: Here, we report the identification and characterization of TPD1 homologs in diploid banana (Musa itinerans) and examine their role in pollen development by overexpressing the closest homolog, MaTPD1A. MaTPD1A exhibits high expression in stamen and localizes in the plasma membrane. MaTPD1A-overexpressing plants produce no pollen grains and smaller and seedless fruit compared to wild-type plants. Transcriptome analysis showed that in plant hormone, starch and sucrose metabolism, and linolenic acid metabolism-related pathways were affected by overexpression of MaTPD1A, and the expression of several key regulators, such as PTC1 and MYB80, which are known to affect anther development, is affected in MaTPD1A-overexpressing lines. CONCLUSIONS: Our results indicate that MaTPD1A plays an important role in pollen formation and fruit development in diploid banana, possibly by affecting the expression of some key regulators of pollen development.


Subject(s)
Fruit/growth & development , Gene Expression Regulation, Plant , Musa/genetics , Plant Proteins/genetics , Pollen/growth & development , Fruit/genetics , Genes, Plant , Musa/growth & development , Plant Proteins/metabolism , Pollen/genetics
18.
Int J Mol Sci ; 21(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963632

ABSTRACT

Banana (Musa acuminata, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes. Thus, it is important to conduct a comprehensive identification and characterization of the NAC transcription factor family at the genomic level in M. acuminata. In this article, a total of 181 banana NAC genes were identified. Phylogenetic analysis indicated that NAC genes in M. acuminata, Arabidopsis, and rice were clustered into 18 groups (S1-S18), and MCScanX analysis disclosed that the evolution of MaNAC genes was promoted by segmental duplication events. Expression patterns of NAC genes during banana fruit ripening induced by ethylene were investigated using RNA-Seq data, and 10 MaNAC genes were identified as related to fruit ripening. A subcellular localization assay of selected MaNACs revealed that they were all localized to the nucleus. These results lay a good foundation for the investigation of NAC genes in banana toward the biological functions and evolution.


Subject(s)
Gene Expression Profiling/methods , Musa/physiology , Plant Proteins/genetics , Transcription Factors/genetics , Whole Genome Sequencing/methods , Cell Nucleus/genetics , Ethylenes/pharmacology , Evolution, Molecular , Food Storage , Gene Expression Regulation, Plant/drug effects , Multigene Family , Musa/drug effects , Musa/genetics , Phylogeny
19.
Front Plant Sci ; 11: 600704, 2020.
Article in English | MEDLINE | ID: mdl-33488646

ABSTRACT

Anthocyanins spatiotemporally accumulate in certain tissues of particular species in the banana plant, and MYB transcription factors (TFs) serve as their primary regulators. However, the precise regulatory mechanism in banana remains to be determined. Here, we report the identification and characterization of MaMYB4, an R2R3-MYB repressor TF, characterized by the presence of EAR (ethylene-responsive element binding factor-associated amphiphilic repression) and TLLLFR motifs. MaMYB4 expression was induced by the accumulation of anthocyanins. Transgenic banana plants overexpressing MaMYB4 displayed a significant reduction in anthocyanin compared to wild type. Consistent with the above results, metabolome results showed that there was a decrease in all three identified cyanidins and one delphinidin, the main anthocyanins that determine the color of banana leaves, whereas both transcriptome and reverse transcription-quantitative polymerase chain reaction analysis showed that many key anthocyanin synthesis structural genes and TF regulators were downregulated in MaMYB4 overexpressors. Furthermore, dual-luciferase assays showed that MaMYB4 was able to bind to the CHS, ANS, DFR, and bHLH promoters, leading to inhibition of their expression. Yeast two-hybrid analysis verified that MaMYB4 did not interact with bHLH, which ruled out the possibility that MaMYB4 could be incorporated into the MYB-bHLH-WD40 complex. Our results indicated that MaMYB4 acts as a repressor of anthocyanin biosynthesis in banana, likely due to a two-level repression mechanism that consists of reduced expression of anthocyanin synthesis structural genes and the parallel downregulation of bHLH to interfere with the proper assembly of the MYB-bHLH-WD40 activation complex. To the best of our knowledge, this is the first MYB TF that regulates anthocyanin synthesis that was identified by genetic methods in bananas, which will be helpful for manipulating anthocyanin coloration in banana programs in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...