Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 914: 148381, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38492610

ABSTRACT

Low back pain influences people of every age and is one of the major contributors to the global cost of illness. Intervertebral disc degeneration (IVDD) is a major contributor to low back pain, but its pathogenesis is unknown. Recently, ferroptosis has been shown to have a substantial role in modulating IVDD progression. However, the function of ferroptosis-related long non-coding RNAs (lncRNAs) has rarely been reported in IVDD. Consequently, the research was conducted to explore the ferroptosis-related lncRNA signature in the IVDD occurrence and development. We analyzed two datasets (GSE167199 and GSE167931) archived in the NCBI Gene Expression Omnibus (GEO) public database. We screened differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELncs) in these datasets using the limma package. Ferroptosis-related genes (FRGs) were derived from the FerrDb V2 website and the intersection of DEGs and FRGs was considered as differentially expressed ferroptosis-related genes (DFGs). These genes were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Correlations between DFGs and DELncs were shown by Pearson test to determine differential expression of ferroptosis-related lncRNAs. The Pearson test showed that CPEB1-HTR2A-AS1 and ACSL3-DNAJC27-AS1 pairs had correlation coefficients over 0.9. Twenty ferroptosis-related lncRNAs were identified and validated in IVDD. Eight of these lncRNAs were upregulated in IVDD nucleus pulposus cells, including HTR2A-AS1, MIF-AS1, SLC8A1-AS1, LINC00942, DUXAP8, LINC00161, LUCAT1 and LINC01615. Twelve were downregulated in IVDD nucleus pulposus cells, including DNAJC27-AS1, H19, LINC01588, LINC02015, FLNC1, CARMN, PRKG1-AS1, APCDD1L-DT, LINC00839, LINC00536, LINC00710 and LINC01535. Eighteen of the 20 lncRNAs (excluding H19 and LUCAT1) were identified as ferroptosis-related lncRNAs for the first time and verified in IVDD. We have identified a ferroptosis-related lncRNA signature involved in IVDD and revealed a close relationship between CPEB1 and HTR2A-AS1, and between ACSL3 and DNAJC27-AS1. Our findings indicate that ferroptosis-related lncRNAs are a new target set for the early detection and therapy of IVDD.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , RNA, Long Noncoding , Ferroptosis/genetics , RNA, Long Noncoding/genetics , Intervertebral Disc Degeneration/genetics , Humans , Gene Expression Profiling/methods , Coenzyme A Ligases/genetics , Gene Ontology , Databases, Genetic , Gene Regulatory Networks
2.
BMC Med Genomics ; 17(1): 70, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443923

ABSTRACT

BACKGROUND: We aimed to identify some potential biomarkers for elderly osteoporosis (OP) by integral analysis of lncRNA and mRNA expression data. METHODS: A total of 8 OP cases and 5 healthy participants were included in the study. Fasting peripheral venous blood samples were collected from individuals, and total RNA was extracted. RNA-seq library was prepared and sequenced on the Illumina HiSeq platform. Differential gene expression analysis was performed using "DESeq2" package in R language. Functional enrichment analysis was conducted using the "clusterProfiler" package, and the cis- and trans-regulatory relationships between lncRNA and target mRNA were analyzed by the lncTar software. A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified through the MCODE plugin in Cytoscape. RESULTS: We identified 897 differentially expressed lncRNAs (DELs) and 1366 differentially expressed genes (DEGs) between normal and OP samples. After co-expression network analysis and cis-trans regulatory genes analysis, we identified 69 candidate genes regulated by lncRNAs. Then we further screened 7 genes after PPI analysis. The target gene DOCK4, trans-regulated by two lncRNAs, was found to be significantly upregulated in OP samples. Additionally, 4 miRNAs were identified as potential regulators of DOCK4. The potential diagnostic value of DOCK4 and its two trans-regulatory lncRNAs was supported by ROC analysis, indicating their potential as biomarkers for OP. CONCLUSION: DOCK4 is a potential biomarker for elderly osteoporosis diagnostic. It is identified to be regulated by two lncRNAs and four miRNAs.


Subject(s)
MicroRNAs , Osteoporosis , RNA, Long Noncoding , Aged , Humans , RNA, Long Noncoding/genetics , Biomarkers , Databases, Factual , Osteoporosis/genetics , GTPase-Activating Proteins
3.
Front Mol Biosci ; 10: 1066885, 2023.
Article in English | MEDLINE | ID: mdl-36950524

ABSTRACT

Osteoarthritis (OA), viewing as a degenerative aseptic inflammatory disease, is characterized by joint pain and inflammation that significantly affects the quality of patients' life, especially for the elder. Although rapid progress has been achieved in elucidating the underlying mechanisms of OA occurrence and progression, there is still a lack of effective clinical therapeutics for OA patients. Currently the most common treatments including drug therapy and surgical operations are not very satisfactory in majority of cases, so it is worthy to explore new remedies. During the past few decades, a number of novel forms of regulated cell death have been reported widely, typified by ferroptosis, with its prominent features including reactive oxygen species (ROS) elevation, lipid peroxidation, iron accumulation and glutathione deprivation. Our study was designed to identify the functional roles of differentially expressed ferroptosis-related genes in OA, which were screened out by referring to GEO database via bioinformatics analyses. Human chondrocytes were applied to validate the above findings in the scenario of ferroptosis inhibitors administration. Results partially proved the consistency with bioinformatics analyses that ATF3 and TFRC were highly expressed in interleukin-1ß (IL-1ß)-stimulated chondrocytes whereas CXCL2 and JUN were downregulated. Besides, TFRC was firstly validated to be upregulated in IL-1ß-stimulated chondrocytes, which could be reversed by ferroptosis inhibitors. In conclusion, our study reported two prominent ferroptosis-related genes, ATF3 and TFRC are upregulated in IL-1ß-stimulated chondrocytes while CXCL2 and JUN are downregulated. And preliminary results demonstrated that TFRC might serve as an accomplice of ferroptosis process in IL-1ß-stimulated chondrocytes and ferroptosis inhibitors have the potential to inhibit ROS in IL-1ß-stimulated chondrocytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...