Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
J Med Virol ; 96(5): e29638, 2024 May.
Article in English | MEDLINE | ID: mdl-38682662

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin Fc Fragments , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Vaccination
2.
Cell Rep ; 43(3): 113948, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483908

ABSTRACT

Identifying individual functional B cell receptors (BCRs) is common, but two-dimensional analysis of B cell frequency versus BCR potency would delineate both quantity and quality of antigen-specific memory B cells. We efficiently determine quantitative BCR neutralizing activities using a single-cell-derived antibody supernatant analysis (SCAN) workflow and develop a frequency-potency algorithm to estimate B cell frequencies at various neutralizing activity or binding affinity cutoffs. In an HIV-1 fusion peptide (FP) immunization study, frequency-potency curves elucidate the quantity and quality of FP-specific immunoglobulin G (IgG)+ memory B cells for different animals, time points, and antibody lineages at single-cell resolution. The BCR neutralizing activities are mainly determined by their affinities to soluble envelope trimer. Frequency analysis definitively demonstrates dominant neutralizing antibody lineages. These findings establish SCAN and frequency-potency analyses as promising approaches for general B cell analysis and monoclonal antibody (mAb) discovery. They also provide specific rationales for HIV-1 FP-directed vaccine optimization.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Animals , Antibodies, Neutralizing , HIV Antibodies , Immunoglobulin G , Memory B Cells
3.
Arthritis Rheumatol ; 76(4): 599-613, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37946666

ABSTRACT

OBJECTIVE: The peripheral B cell compartment is heavily disturbed in systemic lupus erythematosus (SLE), but whether B cells develop aberrantly in the bone marrow (BM) is largely unknown. METHODS: We performed single-cell RNA/B cell receptor (BCR) sequencing and immune profiling of BM B cells and classified patients with SLE into two groups: early B cell (Pro-B and Pre-B) normal (EBnor) and EB defective/low (EBlo) groups. RESULTS: The SLE-EBlo group exhibited more severe disease activity and proinflammatory status, overaction of type I interferon signaling and metabolic pathways within the B cell compartment, and aberrant BCR repertoires compared with the SLE-EBnor group. Moreover, in one patient with SLE who was initially classified in the SLE-EBlo group, early B cell deficiency and associated abnormalities were largely rectified in a second BM sample at the remission phase. CONCLUSION: In summary, this study suggests that early B cell loss in BM defines a unique pathological state in a subset of patients with SLE that may play an active role in the dysregulated autoimmune responses.


Subject(s)
Bone Marrow , Lupus Erythematosus, Systemic , Humans , Child , Bone Marrow/pathology , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , B-Lymphocytes , Signal Transduction
4.
iScience ; 26(11): 108254, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026207

ABSTRACT

SARS-CoV-2 Omicron BA.2.75 has diversified into multiple subvariants with additional spike mutations and several are expanding in prevalence, particularly CH.1.1 and BN.1. Here, we investigated the viral receptor affinities and neutralization evasion properties of major BA.2.75 subvariants actively circulating in different regions worldwide. We found two distinct evolutionary pathways and three newly identified mutations that shaped the virological features of these subvariants. One phenotypic group exhibited a discernible decrease in viral receptor affinities, but a noteworthy increase in resistance to antibody neutralization, as exemplified by CH.1.1, which is apparently as resistant as XBB.1.5. In contrast, a second group demonstrated a substantial increase in viral receptor affinity but only a moderate increase in antibody evasion, as exemplified by BN.1. We also observed that all prevalent SARS-CoV-2 variants in the circulation presently, except for BN.1, exhibit profound levels of antibody evasion, suggesting this is the dominant determinant of virus transmissibility today.

5.
Immunity ; 56(10): 2442-2455.e8, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37776849

ABSTRACT

SARS-CoV-2 continues to evolve, with many variants evading clinically authorized antibodies. To isolate monoclonal antibodies (mAbs) with broadly neutralizing capacities against the virus, we screened serum samples from convalescing COVID-19 patients. We isolated two mAbs, 12-16 and 12-19, which neutralized all SARS-CoV-2 variants tested, including the XBB subvariants, and prevented infection in hamsters challenged with Omicron BA.1 intranasally. Structurally, both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, uncovering a site of vulnerability on SARS-CoV-2 spike. These antibodies prevented viral receptor engagement by locking the receptor-binding domain (RBD) of spike in the down conformation, revealing a mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but such mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Cricetinae , Humans , COVID-19 Vaccines , SARS-CoV-2 , Receptors, Virus , Antibodies, Monoclonal , Antibodies, Viral , Antibodies, Neutralizing
6.
J Med Virol ; 95(7): e28901, 2023 07.
Article in English | MEDLINE | ID: mdl-37394780

ABSTRACT

The DiversitabTM system produces target specific high titer fully human polyclonal IgG immunoglobulins from transchromosomic (Tc) bovines shown to be safe and effective against multiple virulent pathogens in animal studies and Phase 1, 2 and 3 human clinical trials. We describe the functional properties of a human monoclonal antibody (mAb), 38C2, identified from this platform, which recognizes recombinant H1 hemagglutinins (HAs) and induces appreciable antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Interestingly, 38C2 monoclonal antibody demonstrated no detectable neutralizing activity against H1N1 virus in both hemagglutination inhibition and virus neutralization assays. Nevertheless, this human monoclonal antibody induced appreciable ADCC against cells infected with multiple H1N1 strains. The HA-binding activity of 38C2 was also demonstrated in flow cytometry using Madin-Darby canine kidney cells infected with multiple influenza A H1N1 viruses. Through further investigation with the enzyme-linked immunosorbent assay involving the HA peptide array and 3-dimensional structural modeling, we demonstrated that 38C2 appears to target a conserved epitope located at the HA1 protomer interface of H1N1 influenza viruses. A novel mode of HA-binding and in vitro ADCC activity pave the way for further evaluation of 38C2 as a potential therapeutic agent to treat influenza virus infections in humans.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Animals , Dogs , Cattle , Epitopes , Antibodies, Monoclonal , Protein Subunits , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Immunoglobulin G , Antibody-Dependent Cell Cytotoxicity
7.
Front Immunol ; 14: 1190416, 2023.
Article in English | MEDLINE | ID: mdl-37275896

ABSTRACT

Accurate identification of beneficial mutations is central to antibody design. Many knowledge-based (KB) computational approaches have been developed to predict beneficial mutations, but their accuracy leaves room for improvement. Thermodynamic integration (TI) is an alchemical free energy algorithm that offers an alternative technique for identifying beneficial mutations, but its performance has not been evaluated. In this study, we developed an efficient TI protocol with high accuracy for predicting binding free energy changes of antibody mutations. The improved TI method outperforms KB methods at identifying both beneficial and deleterious mutations. We observed that KB methods have higher accuracies in predicting deleterious mutations than beneficial mutations. A pipeline using KB methods to efficiently exclude deleterious mutations and TI to accurately identify beneficial mutations was developed for high-throughput mutation scanning. The pipeline was applied to optimize the binding affinity of a broadly sarbecovirus neutralizing antibody 10-40 against the circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified beneficial mutations show strong synergy and improve both binding affinity and neutralization potency of antibody 10-40. Molecular dynamics simulation revealed that the three mutations improve the binding affinity of antibody 10-40 through the stabilization of an altered binding mode with increased polar and hydrophobic interactions. Above all, this study presents an accurate and efficient TI-based approach for optimizing antibodies and other biomolecules.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Antibodies , Thermodynamics , Mutation , Broadly Neutralizing Antibodies
8.
Cell Biosci ; 13(1): 78, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138358

ABSTRACT

BACKGROUND: . Up to 20% of people with HIV (PWH) who undergo virologically suppressed antiretroviral therapy (ART) fail to experience complete immune restoration. We recently reported that plasma anti-CD4 IgG (antiCD4IgG) autoantibodies from immune non-responders specifically deplete CD4 + T cells via antibody-dependent cytotoxicity. However, the mechanism of antiCD4IgG production remains unclear. METHODS: . Blood samples were collected from 16 healthy individuals and 25 PWH on suppressive ART. IgG subclass, plasma lipopolysaccharide (LPS), and antiCD4IgG levels were measured by ELISA. Gene profiles in B cells were analyzed by microarray and quantitative PCR. Furthermore, a patient-derived antiCD4IgG-producing B cell line was generated and stimulated with LPS in vitro. B cell IgG class switch recombination (CSR) was evaluated in response to LPS in splenic B cells from C57/B6 mice in vitro. RESULTS: . Increased plasma anti-CD4 IgGs in PWH were predominantly IgG1 and associated with increased plasma LPS levels as well as B cell expression of TLR2, TLR4, and MyD88 mRNA in vivo. Furthermore, LPS stimulation induced antiCD4IgG production in the antiCD4IgG B cell line in vitro. Finally, LPS promoted CSR in vitro. CONCLUSION: . Our findings suggest that persistent LPS translocation may promote anti-CD4 autoreactive B cell activation and antiCD4IgG production in PWH on ART, which may contribute to gradual CD4 + T cell depletion. This study suggests that reversing a compromised mucosal barrier could improve ART outcomes in PWH who fail to experience complete immune restoration.

9.
J Virol ; 97(6): e0035623, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37199648

ABSTRACT

Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.


Subject(s)
Disease Models, Animal , Gammainfluenzavirus , Guinea Pigs , Orthomyxoviridae Infections , Thogotovirus , Animals , Humans , Administration, Intranasal , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Receptors, Virus
10.
bioRxiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090592

ABSTRACT

SARS-CoV-2 continues to evolve and evade most existing neutralizing antibodies, including all clinically authorized antibodies. We have isolated and characterized two human monoclonal antibodies, 12-16 and 12-19, which exhibited neutralizing activities against all SARS-CoV-2 variants tested, including BQ.1.1 and XBB.1.5. They also blocked infection in hamsters challenged with Omicron BA.1 intranasally. Structural analyses revealed both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, revealing a previously unrecognized site of vulnerability on SARS-CoV-2 spike. These antibodies prevent viral receptor engagement by locking the receptor-binding domain of spike in the down conformation, revealing a novel mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but the responsible mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.

11.
iScience ; 26(4): 106345, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36925721

ABSTRACT

A better understanding of the durability and breadth of serum-neutralizing antibody responses against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants elicited by COVID-19 vaccines is crucial in addressing the current pandemic. In this study, we quantified the decay of serum neutralization antibodies (nAbs) after second and third doses of the original COVID-19 mRNA vaccine. Using an authentic virus-neutralization assay, we found that decay half-lives of WA1- and Delta-nAbs were both ∼60 days after second and third vaccine dose. Unexpectedly, the durability of serum antibodies that neutralize three different Omicron subvariants (BA.1.1, BA.5, BA.2.12.1) was substantially better, with half-lives of ≥6 months. A booster dose of the original COVID-19 vaccine was also found to broaden antibody responses against SARS-CoV and four other sarbecoviruses, in addition to multiple SARS-CoV-2 strains. These findings suggest that repeated vaccinations with the COVID-19 vaccine may confer a degree of protection against future spillover of sarbecoviruses from animal reservoirs.

12.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36750096

ABSTRACT

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Subject(s)
Endocytosis , Low Density Lipoprotein Receptor-Related Protein-2 , Animals , Humans , Mice , Cryoelectron Microscopy , Kidney/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism
13.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36580913

ABSTRACT

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Subject(s)
Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines , SARS-CoV-2/classification , SARS-CoV-2/genetics
14.
Nature ; 613(7944): 558-564, 2023 01.
Article in English | MEDLINE | ID: mdl-36351451

ABSTRACT

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful against COVID-19 (refs. 1,2). However, because SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here we examined this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two independent approaches, including one on a large scale. Indeed, highly resistant viruses emerged from both and their sequences showed a multitude of 3CL protease mutations. In the experiment peformed with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Nevertheless, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones showed that these mutations mediated only low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (around 100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next-generation protease inhibitors.


Subject(s)
Antiviral Agents , COVID-19 , Drug Resistance, Viral , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Mutation , COVID-19 Drug Treatment
16.
Sci Rep ; 12(1): 19403, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371450

ABSTRACT

The recent stall in the global reduction of malaria deaths has made the development of a highly effective vaccine essential. A major challenge to developing an efficacious vaccine is the extensive diversity of Plasmodium falciparum antigens. While genetic diversity plays a major role in immune evasion and is a barrier to the development of both natural and vaccine-induced protective immunity, it has been under-prioritized in the evaluation of malaria vaccine candidates. This study uses genomic approaches to evaluate genetic diversity in next generation malaria vaccine candidate PfRh5. We used targeted deep amplicon sequencing to identify non-synonymous Single Nucleotide Polymorphisms (SNPs) in PfRh5 (Reticulocyte-Binding Protein Homologue 5) in 189 P. falciparum positive samples from Southern Senegal and identified 74 novel SNPs. We evaluated the population prevalence of these SNPs as well as the frequency in individual samples and found that only a single SNP, C203Y, was present at every site. Many SNPs were unique to the individual sampled, with over 90% of SNPs being found in just one infected individual. In addition to population prevalence, we assessed individual level SNP frequencies which revealed that some SNPs were dominant (frequency of greater than 25% in a polygenomic sample) whereas most were rare, present at 2% or less of total reads mapped to the reference at the given position. Structural modeling uncovered 3 novel SNPs occurring under epitopes bound by inhibitory monoclonal antibodies, potentially impacting immune evasion, while other SNPs were predicted to impact PfRh5 structure or interactions with the receptor or binding partners. Our data demonstrate that PfRh5 exhibits greater genetic diversity than previously described, with the caveat that most of the uncovered SNPs are at a low overall frequency in the individual and prevalence in the population. The structural studies reveal that novel SNPs could have functional implications on PfRh5 receptor binding, complex formation, or immune evasion, supporting continued efforts to validate PfRh5 as an effective malaria vaccine target and development of a PfRh5 vaccine.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Malaria Vaccines/genetics , Malaria, Falciparum/prevention & control , Plasmodium falciparum/metabolism , Antibodies, Protozoan , Antigens, Protozoan/genetics , Carrier Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
17.
Cell Host Microbe ; 30(11): 1512-1517.e4, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36108630

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2.75 emerged recently and appears to be spreading. It has nine mutations in spike compared with the currently circulating BA.2, raising concerns that it may further evade vaccine-elicited and therapeutic antibodies. We found BA.2.75 to be moderately more neutralization resistant to sera from vaccinated/boosted individuals than BA.2 (1.8-fold), similar to BA.2.12.1 (1.1-fold), but more neutralization sensitive than BA.4/5 (0.6-fold). Relative to BA.2, BA.2.75 showed heightened resistance to class 1 and class 3 monoclonal antibodies targeting the spike-receptor-binding domain while gaining sensitivity to class 2 antibodies. Resistance was largely conferred by G446S and R460K mutations. BA.2.75 was slightly resistant (3.7-fold) to bebtelovimab, a therapeutic antibody with potent activity against all Omicron subvariants. BA.2.75 also exhibited a higher binding affinity to host receptor ACE2 than other Omicron subvariants. BA.2.75 provides further insight into SARS-CoV-2 evolution as it gains transmissibility while incrementally evading antibody neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Monoclonal , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
18.
bioRxiv ; 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36032976

ABSTRACT

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful in reducing hospitalization or death due to COVID-19 1,2 . However, as SARS-CoV-2 has evolved to become resistant to other therapeutic modalities 3â€"9 , there is a concern that the same could occur for nirmatrelvir. Here, we have examined this possibility by in vitro passaging of SARS-CoV-2 in increasing concentrations of nirmatrelvir using two independent approaches, including one on a large scale in 480 wells. Indeed, highly resistant viruses emerged from both, and their sequences revealed a multitude of 3CL protease mutations. In the experiment done at a larger scale with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Yet, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L, or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones, each containing a unique mutation or a combination of mutations showed that the above precursor mutations only mediated low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (~100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Structural explanations are discussed for some of the mutations that are proximal to the drug-binding site, as well as cross-resistance or lack thereof to ensitrelvir, another clinically important 3CL protease inhibitor. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro , and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next generation protease inhibitors.

19.
Nature ; 608(7923): 603-608, 2022 08.
Article in English | MEDLINE | ID: mdl-35790190

ABSTRACT

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Mutation , SARS-CoV-2 , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Humans , Immunization, Secondary , Receptors, Virus/metabolism , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
20.
J Med Virol ; 94(11): 5392-5400, 2022 11.
Article in English | MEDLINE | ID: mdl-35822280

ABSTRACT

The global spread of the mosquito-borne Zika virus (ZIKV) infection and its complications including Guillain-Barré syndrome and fetus microcephaly in 2015 have made ZIKV as a significant public health threat. The capsid protein plays crucial roles in ZIKV replication and thus represents an attractive therapeutic target. However, inhibitors of ZIKV capsid assembly have not been rigorously identified due to the lack of a target-based screening system. In this study, we developed a novel ZIKV capsid interaction method based on a split-luciferase complementation assay, which can be used to measure and quantify ZIKV capsid-capsid (C-C) interaction by the restored luciferase signal when capsid proteins interact with each other. Furthermore, a Tet-on inducible stable cell line was generated to screen inhibitors of capsid dimerization. By using of this system, peptides (Pep.15-24 in the N-terminal region of ZIKV capsid protein and Pep.44-58 in the α2 helix of ZIKV capsid protein) were identified to inhibit ZIKV C-C interaction. Overall, this study developed a novel inducible assay system to measure ZIKV capsid interaction and identify ZIKV capsid multimerization inhibitors, which will be applied for future discovery of ZIKV assembly inhibitors.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Humans , Virus Replication , Zika Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...