Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 16(754): eadi6887, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959328

ABSTRACT

Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.


Subject(s)
COVID-19 , Class Ib Phosphatidylinositol 3-Kinase , Inflammation , SARS-CoV-2 , Animals , Humans , Mice , Capillary Permeability/drug effects , Class Ib Phosphatidylinositol 3-Kinase/metabolism , COVID-19/pathology , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Inflammation/pathology , Lung/pathology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred C57BL , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , SARS-CoV-2/physiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/pathology
2.
Proc Natl Acad Sci U S A ; 121(31): e2400078121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39058580

ABSTRACT

Current treatments of anxiety and depressive disorders are plagued by considerable side effects and limited efficacies, underscoring the need for additional molecular targets that can be leveraged to improve medications. Here, we have identified a molecular cascade triggered by chronic stress that exacerbates anxiety- and depressive-like behaviors. Specifically, chronic stress enhances Src kinase activity and tyrosine phosphorylation of calmodulin, which diminishes MyosinVa (MyoVa) interaction with Neuroligin2 (NL2), resulting in decreased inhibitory transmission and heightened anxiety-like behaviors. Importantly, pharmacological inhibition of Src reinstates inhibitory synaptic deficits and effectively reverses heightened anxiety-like behaviors in chronically stressed mice, a process requiring the MyoVa-NL2 interaction. These data demonstrate the reversibility of anxiety- and depressive-like phenotypes at both molecular and behavioral levels and uncover a therapeutic target for anxiety and depressive disorders.


Subject(s)
Anxiety , Calmodulin , Signal Transduction , Stress, Psychological , Animals , Mice , Signal Transduction/drug effects , Anxiety/drug therapy , Anxiety/metabolism , Stress, Psychological/metabolism , Calmodulin/metabolism , src-Family Kinases/metabolism , Phosphorylation , Myosins/metabolism , Male , Mice, Inbred C57BL , Depression/drug therapy , Depression/metabolism , Humans
3.
Cancer Res ; 84(10): 1630-1642, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38588407

ABSTRACT

Cancer stem/tumor-initiating cells display stress tolerance and metabolic flexibility to survive in a harsh environment with limited nutrient and oxygen availability. The molecular mechanisms underlying this phenomenon could provide targets to prevent metabolic adaptation and halt cancer progression. Here, we showed in cultured cells and live human surgical biopsies of non-small cell lung cancer that nutrient stress drives the expression of the epithelial cancer stem cell marker integrin αvß3 via upregulation of the ß3 subunit, resulting in a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. Although nutrient deprivation is known to promote acute, yet transient, activation of the stress sensor AMP-activated protein kinase (AMPK), stress-induced αvß3 expression via Src activation unexpectedly led to secondary and sustained AMPK activation. This resulted in the nuclear localization of peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) and upregulation of glutamine metabolism, the tricarboxylic acid cycle, and oxidative phosphorylation. Pharmacological or genetic targeting of this axis prevented lung cancer cells from evading the effects of nutrient stress, thereby blocking tumor initiation in mice following orthotopic implantation of lung cancer cells. These findings reveal a molecular pathway driven by nutrient stress that results in cancer stem cell reprogramming to promote metabolic flexibility and tumor initiation. SIGNIFICANCE: Upregulation of integrin αvß3, a cancer stem cell marker, in response to nutrient stress activates sustained AMPK/PGC1α signaling that induces metabolic reprogramming in lung cancer cells to support their survival. See related commentary by Rainero, p. 1543.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Integrin alphaVbeta3 , Lung Neoplasms , Up-Regulation , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Integrin alphaVbeta3/metabolism , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , AMP-Activated Protein Kinases/metabolism , Stress, Physiological , Nutrients/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509283

ABSTRACT

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Subject(s)
Corticotropin-Releasing Hormone , Habenula , Animals , Male , Mice , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Corticotropin-Releasing Hormone/metabolism , Endocannabinoids , Habenula/metabolism , Neuronal Plasticity/physiology , Neurons/physiology , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Synaptic Transmission/physiology
5.
Neuropsychopharmacology ; 47(12): 2160-2170, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35534528

ABSTRACT

GABA-A receptors (GABAARs) are crucial for development and function of the brain. Altered GABAergic transmission is hypothesized to be involved in neurodevelopmental disorders. Recently, we identified Shisa7 as a GABAAR auxiliary subunit that modulates GABAAR trafficking and GABAergic transmission. However, the underlying molecular mechanisms remain elusive. Here we generated a knock-in (KI) mouse line that is phospho-deficient at a phosphorylation site in Shisa7 (S405) and combined with electrophysiology, imaging and behavioral assays to illustrate the role of this site in GABAergic transmission and plasticity as well as behaviors. We found that expression of phospho-deficient mutants diminished α2-GABAAR trafficking in heterologous cells. Additionally, α1/α2/α5-GABAAR surface expression and GABAergic inhibition were decreased in hippocampal neurons in KI mice. Moreover, chemically induced inhibitory long-term potentiation was abolished in KI mice. Lastly, KI mice exhibited hyperactivity, increased grooming and impaired sleep homeostasis. Collectively, our study reveals a phosphorylation site critical for Shisa7-dependent GABAARs trafficking which contributes to behavioral endophenotypes displayed in neurodevelopmental disorders.


Subject(s)
Hippocampus , Receptors, GABA-A , Animals , Hippocampus/metabolism , Mice , Neurons/metabolism , Phosphorylation , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism
6.
Addict Biol ; 27(1): e13064, 2022 01.
Article in English | MEDLINE | ID: mdl-34036710

ABSTRACT

Early life stress presents an important risk factor for drug addiction and comorbid depression and anxiety through persistent effects on the mesolimbic dopamine pathways. Using an early life stress model for child neglect (a single 24 h episode of maternal deprivation, MD) in rats, recent published works from our lab show that MD induces dysfunction in the ventral tegmental area and its negative controller, the lateral habenula (LHb). MD-induced potentiation of glutamatergic synaptic transmission onto LHb neurons shifts the coordination of excitation/inhibition (E/I) balance towards excitation, resulting in an increase in the overall spontaneous neuronal activity with elevation in bursting and tonic firing, and in the intrinsic excitability of LHb neurons in early adolescent male rats. Here, we explored how MD affects intravenous morphine self-administration (MSA) acquisition and sucrose preference as well as glutamatergic synaptic function in LHb neurons of adult male rats self-administering morphine. We found that MD-induced increases in LHb neuronal and glutamatergic synaptic activity and E/I ratio persisted into adulthood. Moreover, MD significantly reduced morphine intake, triggered anhedonia-like behaviour in the sucrose preference test and was associated with persistent glutamatergic potentiation 24 h after the last MSA session. MSA also altered the decay time kinetics of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) currents in LHb neurons of control rats during this time period. Our data highlight that early life stress-induced glutamatergic plasticity in LHb may dampen the positive reinforcing and motivational properties of both natural rewards and opioids, and may contribute to the development of anhedonia and dysphoric states associated with opioids.


Subject(s)
Habenula , Morphine , Neurons , Stress, Psychological , Synaptic Transmission , Animals , Male , Rats , Dopamine/metabolism , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Habenula/drug effects , Morphine/pharmacology , Neurons/drug effects , Receptors, AMPA/metabolism , Self Administration , Synaptic Transmission/drug effects , Ventral Tegmental Area/metabolism
7.
Front Synaptic Neurosci ; 13: 689518, 2021.
Article in English | MEDLINE | ID: mdl-34122037

ABSTRACT

Adverse events and childhood trauma increase the susceptibility towards developing psychiatric disorders (substance use disorder, anxiety, depression, etc.) in adulthood. Although there are treatment strategies that have utility in combating these psychiatric disorders, little attention is placed on how to therapeutically intervene in children exposed to early life stress (ELS) to prevent the development of later psychopathology. The lateral habenula (LHb) has been a topic of extensive investigation in mental health disorders due to its prominent role in emotion and mood regulation through modulation of brain reward and motivational neural circuits. Importantly, rodent models of ELS have been shown to promote LHb dysfunction. Moreover, one of the potential mechanisms contributing to LHb neuronal and synaptic dysfunction involves endocannabinoid (eCB) signaling, which has been observed to critically regulate emotion/mood and motivation. Many pre-clinical studies targeting eCB signaling suggest that this neuromodulatory system could be exploited as an intervention therapy to halt maladaptive processes that promote dysfunction in reward and motivational neural circuits involving the LHb. In this perspective article, we report what is currently known about the role of eCB signaling in LHb function and discuss our opinions on new research directions to determine whether the eCB system is a potentially attractive therapeutic intervention for the prevention and/or treatment of ELS-associated psychiatric illnesses.

8.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846242

ABSTRACT

Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.


Subject(s)
Glioblastoma/metabolism , Microglia/metabolism , Temozolomide/pharmacology , Adult , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Drug Resistance, Neoplasm/physiology , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Interleukin-11/immunology , Interleukin-11/metabolism , Male , Mice, Inbred C57BL , Mice, Nude , Microglia/physiology , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Temozolomide/metabolism , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/physiology
9.
Trends Neurosci ; 44(2): 152-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33234346

ABSTRACT

The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.


Subject(s)
Membrane Proteins , Receptors, GABA-A , Carrier Proteins , Humans , Membrane Proteins/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid
10.
Neurobiol Stress ; 13: 100267, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344720

ABSTRACT

The lateral habenula (LHb) is an epithalamic brain region associated with value-based decision making and stress evasion through its modulation of dopamine (DA)-mediated reward circuitry. Specifically, increased activity of the LHb is associated with drug addiction, schizophrenia and stress-related disorders such as depression, anxiety and posttraumatic stress disorder. Dynorphin (Dyn)/Kappa opioid receptor (KOR) signaling is a mediator of stress response in reward circuitry. Previously, we have shown that maternal deprivation (MD), a severe early life stress, increases LHb spontaneous neuronal activity and intrinsic excitability while blunting the response of LHb neurons to extrahypothalamic corticotropin-releasing factor (CRF) signaling, another stress mediator. CRF pathways also interact with Dyn/KOR signaling. Surprisingly, there has been little study of direct KOR regulation of the LHb despite its distinct role in stress, reward and aversion processing. To test the functional role of Dyn/KOR signaling in the LHb, we utilized ex-vivo electrophysiology combined with pharmacological tools in rat LHb slices. We show that activation of KORs by a KOR agonist (U50,488) exerted differential effects on the excitability of two distinct sub-populations of LHb neurons that differed in their expression of hyperpolarization-activated cation currents (HCN, Ih). Specifically, KOR stimulation increased neuronal excitability in LHb neurons with large Ih currents (Ih+) while decreasing neuronal excitability in small/negative Ih (Ih-) neurons. We found that an intact fast-synaptic transmission was required for the effects of U50,488 on the excitability of both Ih- and Ih+ LHb neuronal subpopulations. While AMPAR-, GABAAR-, or NMDAR-mediated synaptic transmission alone was sufficient to mediate the effects of U50,488 on excitability of Ih- neurons, either GABAAR- or NMDAR-mediated synaptic transmission could mediate these effects in Ih+ neurons. Consistently, KOR activation also altered both glutamatergic and GABAergic synaptic transmission where stimulation of presynaptic KORs uniformly suppressed glutamate release onto LHb neurons while primarily decreased or in some cases increased GABA release. We also found that MD significantly increased immunolabeled Dyn (the endogenous KOR agonist) labeling in neuronal fibers in LHb while significantly decreasing mRNA levels of KORs in LHb tissues compared to those from non-maternally deprived (non-MD) control rats. Moreover, the U50,488-mediated increase in LHb neuronal firing observed in non-MD rats was absent following MD. Altogether, this is the first demonstration of the existence of functional Dyn/KOR signaling in the LHb that can be modulated in response to severe early life stressors such as MD.

11.
Front Behav Neurosci ; 14: 581360, 2020.
Article in English | MEDLINE | ID: mdl-33192367

ABSTRACT

Exposure to stress is recognized to be a triggering factor in several mood disorders, including depression and anxiety. There is very little understanding of why female subjects have a significantly higher risk for these conditions than males. Recent findings in male rodents indicated that prophylactic ketamine can prevent the development of a stress-induced depressive-like phenotype, providing a pharmacological tool to study the mechanisms underlying stress resilience. Unfortunately, none of these studies incorporated female subjects, nor did they provide a mechanistic understanding of the effects of ketamine on stress resilience. Our previous work identified the prefrontal glutamatergic and parvalbumin (PV) systems as potential molecular mechanisms underlying sex differences in susceptibility to stress-induced emotional deregulations. To further address this point, we treated male and female mice with a single dose of ketamine before exposure to a chronic stress paradigm to determine whether stress-resilience induced by a pre-exposure to ketamine is similar in males and females and whether modulation of the prefrontal glutamatergic and PV systems by ketamine is associated with these behavioral effects. Ketamine prevented chronic stress-induced changes in behaviors in males, which was associated with a reduction in expression of PV and the NMDA receptor NR1 subunit. Ketamine did not protect females against the effects of chronic stress and did not change significantly prefrontal gene expression. Our data highlight fundamental sex differences in the sustained effects of ketamine. They also further implicate prefrontal glutamatergic transmission and PV in resilience to chronic stress.

12.
Front Cell Dev Biol ; 8: 588476, 2020.
Article in English | MEDLINE | ID: mdl-33102491

ABSTRACT

Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.

13.
J Neurosci Res ; 98(7): 1457-1467, 2020 07.
Article in English | MEDLINE | ID: mdl-32162391

ABSTRACT

Traumatic early life stress (ELS) is linked to dopamine (DA) dysregulation which increases the probability of developing psychiatric disorders in adolescence and adulthood. Our prior studies demonstrated that a severe early life stressor, a 24-hr maternal deprivation (MD) in juvenile male rats, could lead to altered DA signaling from the ventral tegmental area (VTA) due to impairment of GABAergic synaptic plasticity (promoting GABAergic long-term depression, LTD) with concomitant changes in the abundance of synaptic regulators including A-kinase anchoring protein (AKAP150). Importantly, these MD-induced synaptic changes in the VTA were accompanied by upregulation of histone deacetylase 2, histone hypoacetylation, and were reversible by HDAC inhibition. Using cell-attached and whole-cell patch clamp recordings, we found that MD stress also increased spontaneous VTA DA neuronal activity and excitability in juvenile male rats without affecting intrinsic excitability. Postsynaptic chemical disruption of AKAP150 and protein kinase A interaction increased VTA DA neuronal excitability in control non-MD rats mimicking the effects of MD on DA cell excitability with similar changes in membrane properties. Interestingly, this disruption decreased MD-induced VTA DA hyperexcitability. This MD-induced DA neuronal hyperexcitability could also be normalized at 24 hr after injection of the class 1 HDAC inhibitor, CI-994. Altogether, our data suggest that AKAP150 plays a critical role in the regulation of VTA DA neuronal excitability and that HDAC-mediated targeting of AKAP150 signaling could normalize VTA DA dysfunction following ELS thereby providing novel therapeutic targets for prevention of later life psychopathology.


Subject(s)
A Kinase Anchor Proteins/metabolism , Action Potentials/drug effects , Dopaminergic Neurons/drug effects , Histone Deacetylase Inhibitors/pharmacology , Maternal Deprivation , Ventral Tegmental Area/drug effects , Animals , Benzamides/pharmacology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Male , Patch-Clamp Techniques , Phenylenediamines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Synaptic Transmission/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology
14.
Front Neurosci ; 14: 616298, 2020.
Article in English | MEDLINE | ID: mdl-33519367

ABSTRACT

Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.

15.
Sci Rep ; 9(1): 19772, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31875035

ABSTRACT

Reduced activity of the prefrontal cortex (PFC) is seen in mood disorders including depression and anxiety. The mechanisms of this hypofrontality remain unclear. Because of their specific physiological properties, parvalbumin-expressing (PV+) inhibitory interneurons contribute to the overall activity of the PFC. Our recent work using a chronic stress mouse model showed that stress-induced increases in prefrontal PV expression correlates with increased anxiety-like behaviors in female mice. Our goal is now to provide a causal relationship between changes in prefrontal PV+ cells and changes in emotional behaviors in mice. We first show that, in addition to increasing overall level of PV expression, chronic stress increases the activity of prefrontal PV+ cells. We then used a chemogenetic approach to mimic the effects of chronic stress and specifically increase the activity of prefrontal PV+ cells. We observed that chemogenetic activation of PV+ cells caused an overall reduction in prefrontal activity, and that chronic activation of PV+ cells lead to increased anxiety-related behaviors in female mice only. These results demonstrate that activity of prefrontal PV+ cells could represent a novel sex-specific modulator of anxiety-related behaviors, potentially through changes in overall prefrontal activity. The findings also support the idea that prefrontal PV+ cells are worth further investigation to better understand mood disorders that are more prevalent in female populations.


Subject(s)
Anxiety/metabolism , Behavior, Animal , Gene Expression Regulation , Interneurons/metabolism , Parvalbumins/biosynthesis , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Animals , Anxiety/pathology , Disease Models, Animal , Female , Interneurons/pathology , Male , Mice , Prefrontal Cortex/pathology , Stress, Psychological/pathology
16.
Transl Psychiatry ; 9(1): 99, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792384

ABSTRACT

Dysfunction of prefrontal parvalbumin (PV+) interneurons has been linked with severe cognitive deficits as observed in several neurodevelopmental disorders including schizophrenia. However, whether a specific aspect of PV+ neurons deregulation, or a specific molecular mechanism within PV+ neurons is responsible for cognitive deficits and other behavioral impairments remain to be determined. Here, we induced cognitive deficits and altered the prefrontal PV system in mice by exposing them neonatally to the NMDA receptor antagonist ketamine. We observed that the cognitive deficits and hyperactivity induced by neonatal ketamine were associated with a downregulation of Npas4 expression specifically in PV+ neurons. To determine whether Npas4 downregulation-induced dysfunction of PV+ neurons could be a molecular contributor to the cognitive and behavioral impairments reported after neonatal ketamine, we used a transgenic Cre-Lox approach. Reduced Npas4 expression within PV+ neurons replicates deficits in short-term memory observed after neonatal ketamine, but does not reproduce disturbances in general activity. Our data show for the first time that the brain-specific transcription factor Npas4 may be an important contributor to PV+ neurons dysfunction in neurodevelopmental disorders, and thereby could contribute to the cognitive deficits observed in diseases characterized by abnormal functioning of PV+ neurons such as schizophrenia. These findings provide a potential novel therapeutic target to rescue the cognitive impairments of schizophrenia that remain to date unresponsive to treatments.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cognitive Dysfunction/metabolism , Interneurons/metabolism , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Schizophrenia/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Disease Models, Animal , Male , Maze Learning , Memory, Short-Term/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Parvalbumins/metabolism , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/genetics
17.
Nat Commun ; 9(1): 5379, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568188

ABSTRACT

Myeloid cells are recruited to damaged tissues where they can resolve infections and tumor growth or stimulate wound healing and tumor progression. Recruitment of these cells is regulated by integrins, a family of adhesion receptors that includes integrin CD11b. Here we report that, unexpectedly, integrin CD11b does not regulate myeloid cell recruitment to tumors but instead controls myeloid cell polarization and tumor growth. CD11b activation promotes pro-inflammatory macrophage polarization by stimulating expression of microRNA Let7a. In contrast, inhibition of CD11b prevents Let7a expression and induces cMyc expression, leading to immune suppressive macrophage polarization, vascular maturation, and accelerated tumor growth. Pharmacological activation of CD11b with a small molecule agonist, Leukadherin 1 (LA1), promotes pro-inflammatory macrophage polarization and suppresses tumor growth in animal models of murine and human cancer. These studies identify CD11b as negative regulator of immune suppression and a target for cancer immune therapy.


Subject(s)
Benzoates/therapeutic use , CD11b Antigen/metabolism , Macrophages/metabolism , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Thiohydantoins/therapeutic use , Animals , Benzoates/pharmacology , CD11b Antigen/agonists , Macrophages/drug effects , Melanoma, Experimental/drug therapy , Mice, Transgenic , Neovascularization, Pathologic , Proto-Oncogene Proteins c-myc/metabolism , Thiohydantoins/pharmacology
18.
Article in English | MEDLINE | ID: mdl-30425634

ABSTRACT

Mounting evidence suggests that the long-term effects of adverse early life stressors on vulnerability to drug addiction and mood disorders are related to dysfunction of brain monoaminergic signaling in reward circuits. Recently, there has been a growing interest in the lateral habenula (LHb) as LHb dysfunction is linked to the development of mental health disorders through monoaminergic dysregulation within brain reward/motivational circuits and may represent a critical target for novel anti-depressants, such as ketamine. Here, we show that maternal deprivation (MD), a severe early life stressor, increases LHb intrinsic excitability and LHb bursting activity, and is associated with the development of increased immobility in the forced swim test (FST) in late-adolescent male rats. A single in vivo injection of ketamine is sufficient to exert prolonged antidepressant effects through reversal of this early life stress-induced LHb neuronal dysfunction and the response in the FST. Our assessment of ketamine's long-lasting beneficial effects on reversal of MD-associated changes in LHb neuronal function and behavior highlights the critical role of the LHb in pathophysiology of depression associated with severe early life stress and in response to novel fast-acting antidepressants.

19.
Exp Neurol ; 309: 160-168, 2018 11.
Article in English | MEDLINE | ID: mdl-30102916

ABSTRACT

Severe early life stressors increase the probability of developing psychiatric disorders later in life through modifications in neuronal circuits controlling brain monoaminergic signaling. Our previous work demonstrated that 24 h maternal deprivation (MD) in male Sprague Dawley rats modifies dopamine (DA) signaling from the ventral tegmental area (VTA) through changes at GABAergic synapses that were reversible by in vitro histone deacetylase (HDAC) inhibition which led to restoration of the scaffold A-kinase anchoring protein (AKAP150) signaling and subsequently recovered GABAergic plasticity (Authement et al., 2015). Using a combination of in situ hybridization, Western blots and immunohistochemistry, we confirmed that MD-induced epigenetic modifications at the level of histone acetylation were associated with an upregulation of HDAC2. MD also increased Akap5 mRNA levels in the VTA. Western blot analysis of AKAP150 protein expression showed an increase in synaptic levels of AKAP150 protein in the VTA with an accompanying decrease in synaptic levels of protein kinase A (PKA). Moreover, the abundance of mature brain-derived neurotrophic factor (BDNF) protein of VTA tissues from MD rats was significantly lower than in control groups. In vivo systemic injection with a selective class I HDAC inhibitor (CI-994) was sufficient to reverse MD-induced histone hypoacetylation in the VTA for 24 h after the injection. Furthermore, HDAC inhibition normalized the levels of mBDNF and AKAP150 proteins at 24 h. Our data suggest that HDAC-mediated targeting of BDNF and AKAP-dependent local signaling within VTA could provide novel therapeutics for prevention of later-life psychopathology.


Subject(s)
A Kinase Anchor Proteins/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation/physiology , Histones/metabolism , Maternal Deprivation , Ventral Tegmental Area/metabolism , Acetylation/drug effects , Animals , Dopamine/metabolism , Enzyme Inhibitors/pharmacology , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , In Vitro Techniques , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/drug effects
20.
Sci Signal ; 11(520)2018 03 06.
Article in English | MEDLINE | ID: mdl-29511121

ABSTRACT

Centrally released corticotropin-releasing factor or hormone (extrahypothalamic CRF or CRH) in the brain is involved in the behavioral and emotional responses to stress. The lateral habenula (LHb) is an epithalamic brain region involved in value-based decision-making and stress evasion. Through its inhibition of dopamine-mediated reward circuitry, the increased activity of the LHb is associated with addiction, depression, schizophrenia, and behavioral disorders. We found that extrahypothalamic CRF neurotransmission increased neuronal excitability in the LHb. Through its receptor CRFR1 and subsequently protein kinase A (PKA), CRF application increased the intrinsic excitability of LHb neurons by affecting changes in small-conductance SK-type and large-conductance BK-type K+ channels. CRF also reduced inhibitory γ-aminobutyric acid-containing (GABAergic) synaptic transmission onto LHb neurons through endocannabinoid-mediated retrograde signaling. Maternal deprivation is a severe early-life stress that alters CRF neural circuitry and is likewise associated with abnormal mental health later in life. LHb neurons from pups deprived of maternal care exhibited increased intrinsic excitability, reduced GABAergic transmission, decreased abundance of SK2 channel protein, and increased activity of PKA, without any substantial changes in Crh or Crhr1 expression. Furthermore, maternal deprivation blunted the response of LHb neurons to subsequent, acute CRF exposure. Activating SK channels or inhibiting postsynaptic PKA activity prevented the effects of both CRF and maternal deprivation on LHb intrinsic excitability, thus identifying potential pharmacological targets to reverse central CRF circuit dysregulation in patients with associated disorders.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Habenula/metabolism , Stress, Psychological/metabolism , Synaptic Transmission/physiology , Action Potentials/drug effects , Animals , Corticotropin-Releasing Hormone/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Excitatory Postsynaptic Potentials/drug effects , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Habenula/cytology , Habenula/drug effects , Male , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism , Signal Transduction/drug effects , Stress, Psychological/physiopathology , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL