Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(10): 1630-1642, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38588407

ABSTRACT

Cancer stem/tumor-initiating cells display stress tolerance and metabolic flexibility to survive in a harsh environment with limited nutrient and oxygen availability. The molecular mechanisms underlying this phenomenon could provide targets to prevent metabolic adaptation and halt cancer progression. Here, we showed in cultured cells and live human surgical biopsies of non-small cell lung cancer that nutrient stress drives the expression of the epithelial cancer stem cell marker integrin αvß3 via upregulation of the ß3 subunit, resulting in a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. Although nutrient deprivation is known to promote acute, yet transient, activation of the stress sensor AMP-activated protein kinase (AMPK), stress-induced αvß3 expression via Src activation unexpectedly led to secondary and sustained AMPK activation. This resulted in the nuclear localization of peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) and upregulation of glutamine metabolism, the tricarboxylic acid cycle, and oxidative phosphorylation. Pharmacological or genetic targeting of this axis prevented lung cancer cells from evading the effects of nutrient stress, thereby blocking tumor initiation in mice following orthotopic implantation of lung cancer cells. These findings reveal a molecular pathway driven by nutrient stress that results in cancer stem cell reprogramming to promote metabolic flexibility and tumor initiation. SIGNIFICANCE: Upregulation of integrin αvß3, a cancer stem cell marker, in response to nutrient stress activates sustained AMPK/PGC1α signaling that induces metabolic reprogramming in lung cancer cells to support their survival. See related commentary by Rainero, p. 1543.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Integrin alphaVbeta3 , Lung Neoplasms , Up-Regulation , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Integrin alphaVbeta3/metabolism , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , AMP-Activated Protein Kinases/metabolism , Stress, Physiological , Nutrients/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846242

ABSTRACT

Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.


Subject(s)
Glioblastoma/metabolism , Microglia/metabolism , Temozolomide/pharmacology , Adult , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Drug Resistance, Neoplasm/physiology , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Interleukin-11/immunology , Interleukin-11/metabolism , Male , Mice, Inbred C57BL , Mice, Nude , Microglia/physiology , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Temozolomide/metabolism , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...