Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Nucl Med ; 65(4): 520-526, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38485270

ABSTRACT

Radiation pneumonitis (RP) that develops early (i.e., within 3 mo) (RPEarly) after completion of concurrent chemoradiation (cCRT) leads to treatment discontinuation and poorer survival for patients with stage III non-small cell lung cancer. Since no RPEarly risk model exists, we explored whether published RP models and pretreatment 18F-FDG PET/CT-derived features predict RPEarly Methods: One hundred sixty patients with stage III non-small cell lung cancer treated with cCRT and consolidative immunotherapy were analyzed for RPEarly Three published RP models that included the mean lung dose (MLD) and patient characteristics were examined. Pretreatment 18F-FDG PET/CT normal-lung SUV featured included the following: 10th percentile of SUV (SUVP10), 90th percentile of SUV (SUVP90), SUVmax, SUVmean, minimum SUV, and SD. Associations between models/features and RPEarly were assessed using area under the receiver-operating characteristic curve (AUC), P values, and the Hosmer-Lemeshow test (pHL). The cohort was randomly split, with similar RPEarly rates, into a 70%/30% derivation/internal validation subset. Results: Twenty (13%) patients developed RPEarly Predictors for RPEarly were MLD alone (AUC, 0.72; P = 0.02; pHL, 0.87), SUVP10, SUVP90, and SUVmean (AUC, 0.70-0.74; P = 0.003-0.006; pHL, 0.67-0.70). The combined MLD and SUVP90 model generalized in the validation subset and was deemed the final RPEarly model (RPEarly risk = 1/[1+e(- x )]; x = -6.08 + [0.17 × MLD] + [1.63 × SUVP90]). The final model refitted in the 160 patients indicated improvement over the published MLD-alone model (AUC, 0.77 vs. 0.72; P = 0.0001 vs. 0.02; pHL, 0.65 vs. 0.87). Conclusion: Patients at risk for RPEarly can be detected with high certainty by combining the normal lung's MLD and pretreatment 18F-FDG PET/CT SUVP90 This refined model can be used to identify patients at an elevated risk for premature immunotherapy discontinuation due to RPEarly and could allow for interventions to improve treatment outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Pneumonitis , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Radiation Pneumonitis/diagnostic imaging , Radiation Pneumonitis/etiology , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18/therapeutic use , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Lung , Immunotherapy , Retrospective Studies
3.
Adv Radiat Oncol ; 9(1): 101284, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38260213

ABSTRACT

Purpose: Data are limited on radiation-induced lung toxicities (RILT) after multiple courses of lung stereotactic body radiation therapy (SBRT). We herein analyze a large cohort of patients to explore the clinical and dosimetric risk factors associated with RILT in such settings. Methods and Materials: A single institutional database of patients treated with multiple courses of lung SBRT between January 2014 and December 2019 was analyzed. Grade 2 or higher (G2+) RILT after the last course of SBRT was the primary endpoint. Composite plans were generated with advanced algorithms including deformable registration and equivalent dose adjustment. Logistic regression analyses were performed to examine correlations between patient or treatment factors including dosimetry and G2+ RILT. Risk stratification of patients and lung constraints based on acceptable normal tissue complication probability were calculated based on risk factors identified. Results: Among 110 eligible patients (56 female and 54 male), there were 64 synchronous (58.2%; defined as 2 courses of SBRT delivered within 30 days) and 46 metachronous (41.8%) courses of SBRT. The composite median lung V20, lung V5, and mean lung dose were 9.9% (interquartile range [IQR], 7.3%-12.4%), 32.2% (IQR, 25.5%-40.1%), and 7.0 Gy (IQR, 5.5 Gy-8.6 Gy), respectively. With a median follow-up of 21.1 months, 30 patients (27.3%) experienced G2+ RILT. Five patients (4.5%) developed G3 RILT, and 1 patient (0.9%) developed G4 RILT, and no patients developed G5 RILT. On multivariable regression analysis, female sex (odds ratio [OR], 4.35; 95% CI, 1.49%-14.3%; P = .01), synchronous SBRT (OR, 8.78; 95% CI, 2.27%-47.8%; P = .004), prior G2+ RILT (OR, 29.8; 95% CI, 2.93%-437%; P = .007) and higher composite lung V20 (OR, 1.18; 95% CI, 1.02%-1.38%; P = .030) were associated with significantly higher likelihood of G2+ RILT. Conclusions: Our data suggest an acceptable incidence of G2+ RILT after multiple courses of lung SBRT. Female sex, synchronous SBRT, prior G2+ RILT, and higher composite lung V20 may be risk factors for G2+ RILT.

4.
J Thorac Oncol ; 19(4): 626-635, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38070599

ABSTRACT

INTRODUCTION: R0 resection and radiation therapy have been associated with improved overall survival (OS) in patients with thymic carcinoma (TC). Here, we analyzed which subgroups of patients derive the greatest benefit from postoperative radiation therapy (PORT). METHODS: Clinical, pathologic, treatment, and survival information of 462 patients with TC from the International Thymic Malignancy Interest Group/European Society of Thoracic Surgeons database were analyzed. Variables included age, sex, continent of treatment, paraneoplastic syndrome, carcinoma subtype, tumor size, pathologic Masaoka stage, resection status, and use of chemotherapy. OS was the primary end point using the Kaplan-Meier method. Time to recurrence (TTR) was the secondary end point using a competing risk analysis. A 3-month landmark analysis was performed. RESULTS: PORT was associated with a significant OS benefit (5-y OS 68% versus 53%, p = 0.002). In patients with R0 resection, PORT was associated with increased OS for advanced (stages III-IV, p = 0.04), but not early (stages I-II, p = 0.14) stage TC. In patients with an R1/2 resection of advanced-stage TC, PORT was associated with significantly longer OS (5-y OS 53% versus 38%; p < 0.001). Subset analyses did not reveal clear associations of PORT with TTR. On multivariable analysis, lower pathologic stage, PORT, and R0 resection status were associated with an OS benefit, whereas only higher age and lower pathologic stage had an association with longer TTR. CONCLUSIONS: In the largest individual patient data set on patients with TC reported to date, PORT was associated with a meaningful OS benefit in patients with advanced-stage TC after an R0 or R1/2 resection.


Subject(s)
Lung Neoplasms , Surgeons , Thymoma , Thymus Neoplasms , Humans , Thymoma/radiotherapy , Thymoma/surgery , Public Opinion , Neoplasm Staging , Lung Neoplasms/pathology , Thymus Neoplasms/radiotherapy , Thymus Neoplasms/surgery , Retrospective Studies
5.
Radiother Oncol ; 191: 110057, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104783

ABSTRACT

BACKGROUND: The objective of this study is to determine the outcomes and toxicities of patients with malignant pleural mesothelioma (MPM) treated with stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS: Data were extracted from an institutional tumor registry for patients diagnosed with mesothelioma and treated with SBRT. Kaplan-Meier and Cox regression analyses were employed to determine local control (LC) and overall survival (OS). RESULTS: Forty-four patients with 59 total treated tumors from December 2006 to April 2022 were identified. Fifty-one (86.4 %) cases had oligoprogressive disease (five sites or less). The median prescription dose delivered was 3000 cGy in 5 fractions (range: 2700-6000 cGy in 3-8 fractions). Fifty-one (86.4 %) tumors were in the pleura, 4 (6.8 %) spine, 2 (3.4 %) bone, 1 (1.7 %) brain, and 1 (1.7 %) pancreas. The median follow-up from SBRT completion for those alive at last follow-up was 28 months (range: 14-52 months). The most common toxicities were fatigue (50.8 %), nausea (22.0 %), pain flare (15.3 %), esophagitis (6.8 %), dermatitis (6.8 %), and pneumonitis (5.1 %). There were no grade ≥ 3 acute or late toxicities. There were 2 (3.4 %) local failures, one of the pleura and another of the spine. One-year LC was 92.9 % (95 % CI: 74.6-98.2 %) for all lesions and 96.3 % (95 % CI: 76.5-99.5 %) for pleural tumors. One-year LC was 90.9 % (95 % CI: 68.1-97.6 %) for epithelioid tumors and 92.1 % (95 % CI: 72.1-98.0 %) for oligoprogressive tumors. One-year OS from time of SBRT completion was 36.4 % (95 % CI: 22.6-50.3 %). On multivariable analysis, KPS was the lone significant predictor for OS (p = 0.029). CONCLUSIONS: Our single-institutional experience on patients with MPM suggests that SBRT is safe with a low toxicity profile and potentially achieve good local control.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Radiosurgery , Humans , Mesothelioma, Malignant/etiology , Radiosurgery/adverse effects , Treatment Outcome , Follow-Up Studies , Mesothelioma/radiotherapy , Mesothelioma/surgery , Retrospective Studies
6.
Lancet ; 403(10422): 171-182, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38104577

ABSTRACT

BACKGROUND: Most patients with metastatic cancer eventually develop resistance to systemic therapy, with some having limited disease progression (ie, oligoprogression). We aimed to assess whether stereotactic body radiotherapy (SBRT) targeting oligoprogressive sites could improve patient outcomes. METHODS: We did a phase 2, open-label, randomised controlled trial of SBRT in patients with oligoprogressive metastatic breast cancer or non-small-cell lung cancer (NSCLC) after having received at least first-line systemic therapy, with oligoprogression defined as five or less progressive lesions on PET-CT or CT. Patients aged 18 years or older were enrolled from a tertiary cancer centre in New York, NY, USA, and six affiliated regional centres in the states of New York and New Jersey, with a 1:1 randomisation between standard of care (standard-of-care group) and SBRT plus standard of care (SBRT group). Randomisation was done with a computer-based algorithm with stratification by number of progressive sites of metastasis, receptor or driver genetic alteration status, primary site, and type of systemic therapy previously received. Patients and investigators were not masked to treatment allocation. The primary endpoint was progression-free survival, measured up to 12 months. We did a prespecified subgroup analysis of the primary endpoint by disease site. All analyses were done in the intention-to-treat population. The study is registered with ClinicalTrials.gov, NCT03808662, and is complete. FINDINGS: From Jan 1, 2019, to July 31, 2021, 106 patients were randomly assigned to standard of care (n=51; 23 patients with breast cancer and 28 patients with NSCLC) or SBRT plus standard of care (n=55; 24 patients with breast cancer and 31 patients with NSCLC). 16 (34%) of 47 patients with breast cancer had triple-negative disease, and 51 (86%) of 59 patients with NSCLC had no actionable driver mutation. The study was closed to accrual before reaching the targeted sample size, after the primary efficacy endpoint was met during a preplanned interim analysis. The median follow-up was 11·6 months for patients in the standard-of-care group and 12·1 months for patients in the SBRT group. The median progression-free survival was 3·2 months (95% CI 2·0-4·5) for patients in the standard-of-care group versus 7·2 months (4·5-10·0) for patients in the SBRT group (hazard ratio [HR] 0·53, 95% CI 0·35-0·81; p=0·0035). The median progression-free survival was higher for patients with NSCLC in the SBRT group than for those with NSCLC in the standard-of-care group (10·0 months [7·2-not reached] vs 2·2 months [95% CI 2·0-4·5]; HR 0·41, 95% CI 0·22-0·75; p=0·0039), but no difference was found for patients with breast cancer (4·4 months [2·5-8·7] vs 4·2 months [1·8-5·5]; 0·78, 0·43-1·43; p=0·43). Grade 2 or worse adverse events occurred in 21 (41%) patients in the standard-of-care group and 34 (62%) patients in the SBRT group. Nine (16%) patients in the SBRT group had grade 2 or worse toxicities related to SBRT, including gastrointestinal reflux disease, pain exacerbation, radiation pneumonitis, brachial plexopathy, and low blood counts. INTERPRETATION: The trial showed that progression-free survival was increased in the SBRT plus standard-of-care group compared with standard of care only. Oligoprogression in patients with metastatic NSCLC could be effectively treated with SBRT plus standard of care, leading to more than a four-times increase in progression-free survival compared with standard of care only. By contrast, no benefit was observed in patients with oligoprogressive breast cancer. Further studies to validate these findings and understand the differential benefits are warranted. FUNDING: National Cancer Institute.


Subject(s)
Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Female , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Breast Neoplasms/radiotherapy , Breast Neoplasms/etiology , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Antineoplastic Combined Chemotherapy Protocols/adverse effects
7.
Article in English | MEDLINE | ID: mdl-38154510

ABSTRACT

PURPOSE: Larger tumors are underrepresented in most prospective trials on stereotactic body radiation therapy (SBRT) for inoperable non-small cell lung cancer (NSCLC). We performed this phase 1 trial to specifically study the maximum tolerated dose (MTD) of SBRT for NSCLC >3 cm. METHODS AND MATERIALS: A 3 + 3 dose-escalation design (cohort A) with an expansion cohort at the MTD (cohort B) was used. Patients with inoperable NSCLC >3 cm (T2-4) were eligible. Select ipsilateral hilar and single-station mediastinal nodes were permitted. The initial SBRT dose was 40 Gy in 5 fractions, with planned escalation to 50 and 60 Gy in 5 fractions. Adjuvant chemotherapy was mandatory for cohort A and optional for cohort B, but no patients in cohort B received chemotherapy. The primary endpoint was SBRT-related acute grade (G) 4+ or persistent G3 toxicities (Common Terminology Criteria for Adverse Events version 4.03). Secondary endpoints included local failure (LF), distant metastases, disease progression, and overall survival. RESULTS: The median age was 80 years; tumor size was >3 cm and ≤5 cm in 20 (59%) and >5 cm in 14 patients (41%). In cohort A (n = 9), 3 patients treated to 50 Gy experienced G3 radiation pneumonitis (RP), thus defining the MTD. In the larger dose-expansion cohort B (n = 25), no radiation therapy-related G4+ toxicities and no G3 RP occurred; only 2 patients experienced G2 RP. The 2-year cumulative incidence of LF was 20.2%, distant failure was 34.7%, and disease progression was 54.4%. Two-year overall survival was 53%. A biologically effective dose (BED) <100 Gy was associated with higher LF (P = .006); advanced stage and higher neutrophil/lymphocyte ratio were associated with greater disease progression (both P = .004). CONCLUSIONS: Fifty Gy in 5 fractions is the MTD for SBRT to tumors >3 cm. A higher BED is associated with fewer LFs even in larger tumors. Cohort B appears to have had less toxicity, possibly due to the omission of chemotherapy.

8.
J Radiosurg SBRT ; 9(1): 63-74, 2023.
Article in English | MEDLINE | ID: mdl-38029007

ABSTRACT

Purpose: Stereotactic body proton therapy (SBPT) is an emerging treatment strategy for lung tumors that aims to combine the excellent local control benefits of ultra-hypofractionation with the physical advantages of protons, which reduce the integral dose to organs at risk (OARs) compared to photons. To date, however, very little data delivering SBPT in 5 or fewer fractions to lung tumors have been reported. Given that photon stereotactic body radiation therapy can struggle to deliver ablative doses to high-risk tumors (i.e., central/ultra-central location, prior in-field radiation, tumor size >5 cm, or the presence of severe pulmonary comorbidities) while adhering to OAR dose constraints, we hypothesized that SBPT would be an effective alternative for patients with high-risk tumors. Methods and Materials: Twenty-seven high-risk patients with 29 lung tumors treated with SBPT at the New York Proton Center between December 2019 and November 2022 were retrospectively identified. Patients were divided into three major subgroups: early-stage non-small cell lung cancer (NSCLC), locally recurrent NSCLC, and metastatic cancer from lung cancer or other histologies. Patient characteristics were reported using descriptive statistics, actuarial methods were used to quantify disease control rates, and toxicities were scored using CTCAE v 5.0. Results: The most common high-risk indications for SBPT were central/ultra-central tumor location (69.0%), severe COPD (48.1%), reirradiation (44.4%), significant pulmonary fibrosis (22.2%), and large tumor size > 5 cm (18.5%). In total, 96.6% of tumors were fully covered by the prescription dose without compromising target coverage. Three-year actuarial rates of local control for early-stage NSCLC, locally recurrent NSCLC, and metastatic patients were 89%, 100%, and 43%, respectively. Three-year actuarial rates of regional control were 89%, 67%, and 86%. Three-year actuarial rates of distant metastasis-free survival were 79%, 100%, and 0%. Two patients (7.4%), both of whom had clinically significant baseline interstitial lung disease and pre-treatment continuous oxygen demand, experienced grade ≥2 pulmonary toxicity (1 grade 3, 1 grade 5). There were no acute or late grade ≥2 toxicities related to esophagitis, cardiac injury, airway injury, pulmonary fibrosis, bronchopulmonary hemorrhage or brachial plexopathy. Conclusions: In the largest study of proton SBRT reported to date, SBPT has a favorable toxicity profile while being an effective approach for treating most high-risk tumors without requiring dose de-escalation or compromising tumor coverage and warrants further investigation.

9.
J Radiosurg SBRT ; 9(1): 53-62, 2023.
Article in English | MEDLINE | ID: mdl-38029008

ABSTRACT

This study presents the clinical experiences of the New York Proton Center in employing proton pencil beam scanning (PBS) for the treatment of lung stereotactic body radiation therapy. It encompasses a comprehensive examination of multiple facets, including patient simulation, delineation of target volumes and organs at risk, treatment planning, plan evaluation, quality assurance, and motion management strategies. By sharing the approaches of the New York Proton Center and providing recommendations across simulation, treatment planning, and treatment delivery, it is anticipated that the valuable experience will be provided to a broader proton therapy community, serving as a useful reference for future clinical practice and research endeavors in the field of stereotactic body proton therapy for lung tumors.

10.
J Radiosurg SBRT ; 9(1): 17-32, 2023.
Article in English | MEDLINE | ID: mdl-38029014

ABSTRACT

Stereotactic body radiation therapy (SBRT) has emerged as a standard treatment approach for early-stage lung cancer and intrathoracic oligometastatic or oligoprogressive disease. While local control is often excellent with this modality when delivered with photon therapy, toxicities for select patients can be significant. Proton therapy offers a unique opportunity to widen the therapeutic window when treating patients with thoracic malignancies requiring or benefitting from ultra-high doses per fraction. Thoracic proton SBRT may be particularly beneficial in cases requiring dose escalation, for tumors >5 cm, for central or ultra-central tumors, for reirradiation, in patients with interstitial lung diseases, and when combining radiation with immunotherapy. These clinical indications are detailed, along with supporting literature and clinical recommendations. Other considerations, future directions and potential benefits of proton SBRT, including sparing lymphocytes, when delivered as intensity-modulated proton therapy or as FLASH, and for the treatment of locally advanced non-small cell lung cancer or in patients with homologous recombination repair deficiencies, are also discussed.

11.
Front Oncol ; 13: 1253629, 2023.
Article in English | MEDLINE | ID: mdl-37795442

ABSTRACT

Background: Sensitive and reliable biomarkers for early detection of recurrence are needed to improve post-definitive radiation risk stratification, disease management, and outcomes for patients with unresectable early-stage or locally advanced non-small cell lung cancer (NSCLC) who are treated with definitive radiation therapy (RT). This prospective, multistate single-center, cohort study investigated the association of circulating tumor DNA (ctDNA) status with recurrence in patients with unresectable stage I-III NSCLC who underwent definitive RT. Methods: A total of 70 serial plasma samples from 17 NSCLC patients were collected before, during, and after treatment. A personalized, tumor-informed ctDNA assay was used to track a set of up to 16 somatic, single nucleotide variants in the associated patient's plasma samples. Results: Pre-treatment ctDNA detection rate was 82% (14/17) and varied based on histology and stage. ctDNA was detected in 35% (6/17) of patients at the first post-RT timepoint (median of 1.66 months following the completion of RT), all of whom subsequently developed clinical progression. At this first post-RT time point, patients with ctDNA-positivity had significantly worse progression-free survival (PFS) [hazard ratio (HR): 24.2, p=0.004], and ctDNA-positivity was the only significant prognostic factor associated with PFS (HR: 13.4, p=0.02) in a multivariate analysis. All patients who developed clinical recurrence had detectable ctDNA with an average lead time over radiographic progression of 5.4 months, and post-RT ctDNA positivity was significantly associated with poor PFS (p<0.0001). Conclusion: Personalized, longitudinal ctDNA monitoring can detect recurrence early in patients with unresectable NSCLC patients undergoing curative radiation and potentially risk-stratify patients who might benefit most from treatment intensification.

12.
Radiother Oncol ; 187: 109824, 2023 10.
Article in English | MEDLINE | ID: mdl-37532104

ABSTRACT

BACKGROUND/PURPOSE: Stereotactic body radiation therapy (SBRT) is standard for patients with inoperable early-stage NSCLC. We hypothesized that SBRT for sarcoma pulmonary metastases would achieve high rates of local control with acceptable toxicity and that patients with oligometastatic disease may achieve prolonged survival following SBRT. MATERIALS/METHODS: This retrospective review included consecutive patients at our institution treated with SBRT for sarcoma pulmonary metastases. Cumulative incidence of local failure (LF) was estimated using a competing risks framework. RESULTS: We identified 66 patients treated to 95 pulmonary metastases with SBRT. The median follow-up from the time of SBRT was 36 months (95% CI 34 - 53 months). The cumulative incidence of LF at 12 and 24 months was 3.1% (95% CI 0.9 - 10.6%) and 7.4% (95% CI 4.0% - 13.9%), respectively. The 12- and 24-month overall survival was 74% (95% CI 64 - 86%) and 49% (38 - 63%), respectively. Oligometastatic disease, intrathoracic only disease, and performance status were associated with improved survival on univariable analysis. Three patients had grade 2 pneumonitis, and one patient had grade 2 esophagitis. No patients had ≥ grade 3+ toxicities. CONCLUSION: To the best of our knowledge, this is the largest series of patients treated with SBRT for pulmonary sarcoma metastases. We observed that SBRT offers an effective alternative to surgical resection with excellent local control and low proportions of toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Sarcoma , Humans , Treatment Outcome , Radiosurgery/adverse effects , Carcinoma, Non-Small-Cell Lung/radiotherapy , Retrospective Studies , Sarcoma/radiotherapy
13.
Int J Radiat Oncol Biol Phys ; 116(5): 1091-1099, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36889516

ABSTRACT

PURPOSE: Radiation pneumonitis (RP) is the most common dose-limiting toxicity for thoracic radiation therapy. Nintedanib is used for the treatment of idiopathic pulmonary fibrosis, which shares pathophysiological pathways with the subacute phase of RP. Our goal was to investigate the efficacy and safety of nintedanib added to a prednisone taper compared with a prednisone taper alone in reducing pulmonary exacerbations in patients with grade 2 or higher (G2+) RP. METHODS AND MATERIALS: In this phase 2, randomized, double-blinded, placebo-controlled trial, patients with newly diagnosed G2+ RP were randomized 1:1 to nintedanib or placebo in addition to a standard 8-week prednisone taper. The primary endpoint was freedom from pulmonary exacerbations at 1 year. Secondary endpoints included patient-reported outcomes and pulmonary function tests. Kaplan-Meier analysis was used to estimate the probability of freedom from pulmonary exacerbations. The study was closed early due to slow accrual. RESULTS: Thirty-four patients were enrolled between October 2015 and February 2020. Of 30 evaluable patients, 18 were randomized to the experimental Arm A (nintedanib + prednisone taper) and 12 to the control Arm B (placebo + prednisone taper). Freedom from exacerbation at 1 year was 72% (confidence interval, 54%-96%) in Arm A and 40% (confidence interval, 20%-82%) in Arm B (1-sided, P = .037). In Arm A, there were 16 G2+ adverse events possibly or probably related to treatment compared with 5 in the placebo arm. There were 3 deaths during the study period in Arm A due to cardiac failure, progressive respiratory failure, and pulmonary embolism. CONCLUSIONS: There was an improvement in pulmonary exacerbations by the addition of nintedanib to a prednisone taper. Further investigation is warranted for the use of nintedanib for the treatment of RP.


Subject(s)
Protein Kinase Inhibitors , Radiation Pneumonitis , Humans , Protein Kinase Inhibitors/therapeutic use , Radiation Pneumonitis/etiology , Prednisone/adverse effects , Disease Progression , Double-Blind Method
14.
Phys Imaging Radiat Oncol ; 25: 100410, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36687507

ABSTRACT

Background and purpose: Coronary calcifications are associated with coronary artery disease in patients undergoing radiotherapy (RT) for non-small cell lung cancer (NSCLC). We quantified calcifications in the coronary arteries and aorta and investigated their relationship with overall survival (OS) in patients treated with definitive RT (Def-RT) or post-operative RT (PORT). Materials and methods: We analyzed 263 NSCLC patients treated from 2004 to 2017. Calcium burden was ascertained with a Hounsfield unit (HU) cutoff of > 130 in addition to a deep learning (DL) plaque estimator. The HU cutoff volumes were defined for coronary arteries (PlaqueCoro) and coronary arteries and aorta combined (PlaqueCoro+Ao), while the DL estimator ranged from 0 (no plaque) to 3 (high plaque). Patient and treatment characteristics were explored for association with OS. Results: The median PlaqueCoro and PlaqueCoro+Ao was 0.75 cm3 and 0.87 cm3 in the Def-RT group and 0.03 cm3 and 0.52 cm3 in the PORT group. The median DL estimator was 2 in both cohorts. In Def-RT, large PlaqueCoro (HR:1.11 (95%CI:1.04-1.19); p = 0.008), and PlaqueCoro+Ao (HR:1.06 (95%CI:1.02-1.11); p = 0.03), and poor Karnofsky Performance Status (HR: 0.97 (95%CI: 0.94-0.99); p = 0.03) were associated with worse OS. No relationship was identified between the plaque volumes and OS in PORT, or between the DL plaque estimator and OS in either Def-RT or PORT. Conclusions: Coronary artery calcification assessed from RT planning CT scans was significantly associated with OS in patients who underwent Def-RT for NSCLC. This HU thresholding method can be straightforwardly implemented such that the role of calcifications can be further explored.

15.
JTO Clin Res Rep ; 4(1): 100440, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36590015

ABSTRACT

Introduction: Single-agent monoclonal antibody therapy against programmed death-ligand 1 (PD-L1) has modest effects in malignant pleural mesothelioma. Radiation therapy can enhance the antitumor effects of immunotherapy. Nevertheless, the safety of combining anti-PD-L1 therapy with stereotactic body radiation therapy (SBRT) is unknown. We present the results of a phase 1 trial to evaluate the safety of the anti-PD-L1 antibody avelumab plus SBRT in patients with malignant pleural mesothelioma. Methods: This was a single-arm, investigator-initiated trial in patients who progressed on prior chemotherapy. Avelumab was delivered every other week, and SBRT was delivered to one lesion in three to five fractions (minimum of 30 Gy) followed by continuation of avelumab up to 24 months or until disease progression. The primary end point of the study was safety on the basis of grade 3+ nonhematologic adverse events (AEs) within 3 months of SBRT. Results: Thirteen assessable patients received a median of seven cycles (range: 2-26 cycles) of avelumab. There were 27 grade 1, 17 grade 2, four grade 3, and no grade 4 or 5 avelumab-related AEs. The most common were infusion-related allergic reactions (n = 6), anorexia or weight loss (n = 6), fatigue (n = 6), thyroid disorders (n = 5), diarrhea (n = 3), and myalgia or arthralgias (n = 3). There were 10 grade 1, four grade 2, one grade 3, and no grade 4 or 5 SBRT-related AEs. The most common were diarrhea (n = 3), chest pain/myalgia (n = 2), fatigue (n = 2), cough (n = 2), dyspnea (n = 2), and nausea/vomiting (n = 2). Conclusions: Combination avelumab plus SBRT seems tolerable on the basis of the prespecified toxicity end points of the first stage of this Simon two-stage design phase 1 study.

16.
JCO Precis Oncol ; 6: e2200024, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36201714

ABSTRACT

PURPOSE: Local therapy prolongs progression-free survival in patients with oligometastatic non-small-cell lung cancers treated with chemotherapy. We previously reported that local therapy also prolongs survival and time to next therapy in patients on tyrosine kinase inhibitors (TKIs) for EGFR-mutant lung adenocarcinomas. Here, we investigate the role of local therapy in patients progressing on TKIs for ALK/ROS1/RET-rearranged lung adenocarcinomas. MATERIALS AND METHODS: Patients with advanced ALK/ROS/RET-rearranged lung adenocarcinomas who underwent radiation, surgery, or percutaneous thermal ablation from 2012 to 2020 for progression on an ALK/ROS1/RET TKI were included. Progression patterns were identified. Times from local therapy to progression, next therapy, and death were measured. RESULTS: Sixty-one patients with ALK (n = 37), ROS1 (n = 12), and RET (n = 12) fusions were identified. Patients received radiotherapy (92%), surgery (13%), and percutaneous thermal ablation (8%). Local therapy was administered for solitary/oligoprogressive (94%) or polyprogressive (6%) disease. For most patients (85%), local therapy addressed all progressing sites. The median times from any local therapy to subsequent progression and next systemic therapy were 6.8 months (95% CI, 5.1 to 8.1) and 10 months (95% CI, 8.4 to 15.3), respectively. Third or greater local therapy was associated with shorter time to progression and next therapy than first/second local therapies (hazard ratio, 4.97; P < .001 and hazard ratio, 2.48; P < .001). The median overall survival from first local therapy was 34 months (95% CI, 26 to not reached). CONCLUSION: Local therapy for progression on ALK, ROS1, or RET TKIs is associated with clinically meaningful time on continued TKI therapy beyond progression, especially earlier in the course of disease.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ret/therapeutic use , Reactive Oxygen Species/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics
18.
J Thorac Oncol ; 17(5): 637-650, 2022 05.
Article in English | MEDLINE | ID: mdl-35227908

ABSTRACT

Thymic carcinomas are rare malignancies that in general arise in the prevascular (anterior) mediastinum. These tumors are usually invasive, often present at advanced stages, and typically behave aggressively. Studies are hampered by the paucity of these tumors, the large variety of carcinoma subtypes, and the lack of unique morphologic and immunophenotypic features. Despite these challenges, advances in diagnostic imaging, surgical approaches, systemic therapies, and radiation therapy techniques have been made. The WHO classification of thymic epithelial tumors has been updated in 2021, and the eighth tumor nodal metastasis staging by the American Joint Committee on Cancer/Union for International Cancer Control included thymic carcinomas in 2017. Molecular alterations that provide more insight into the pathogenesis of these tumors and that potentially permit use of novel targeted therapies are increasingly being identified. New approaches to radiation therapy, chemotherapy, and immunotherapy are under evaluation. International societies, including the International Thymic Malignancy Interest Group, European Society of Thoracic Surgeons, and Japanese, Chinese, and Korean thymic associations, have been critical in organizing and conducting multi-institutional clinical studies. Herein, we review contemporary multidisciplinary perspectives in diagnosis and management of thymic carcinoma.


Subject(s)
Lung Neoplasms , Neoplasms, Glandular and Epithelial , Thymoma , Thymus Neoplasms , Humans , Lung Neoplasms/pathology , Neoplasm Staging , Neoplasms, Glandular and Epithelial/pathology , Public Opinion , Thymoma/pathology , Thymus Neoplasms/diagnosis , Thymus Neoplasms/pathology , Thymus Neoplasms/therapy
19.
Int J Radiat Oncol Biol Phys ; 113(2): 335-344, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35157996

ABSTRACT

PURPOSE: Postoperative radiation therapy (PORT) in resected non-small cell lung cancer (NSCLC) improves locoregional outcomes, but recent randomized data do not support its unselected use. We assessed if tumor mutational burden (TMB) and mutations in genes associated with radiation sensitivity can select patients for PORT. METHODS AND MATERIALS: Patients with resected NSCLC treated with and without PORT who underwent tumor genomic profiling were examined. The incidence of locoregional failures (LRFs) in patients with deleterious mutations in DNA damage response and repair (DDR) genes and genes associated with radiation resistance (KEAP1/NFE2L2/STK11/PIK3CA) were investigated. Cox modeling and receiver operating characteristic curve (ROC) analysis assessed the relationship between TMB and locoregional control (LRC). RESULTS: Eighty-nine patients with NSCLC treated with PORT were analyzed, with a 2-year LRF rate of 19% (95% confidence interval, 10%-27%). Among patients treated with PORT, those with mutations in radiation resistance genes (n = 16 [18%]) had significantly more LRFs than patients without mutations (2-year LRF rate: 60% vs 11%; P < .001). On multivariate analysis, radiation-resistance mutations were associated with LRF after PORT (hazard ratio, 7.42; P < .001). Patients with mutations identified in DDR genes (n = 15 [17%]) had significantly improved LRC (P = .048) and no LRF events after PORT. On multivariate analysis, a higher TMB was associated with improved LRC after PORT (hazard ratio, 0.86; P = .01), and TMB was associated with PORT outcomes (area under ROC curve, 0.67-0.77). These genomic markers were not similarly associated with LRF in patients not treated with PORT. CONCLUSIONS: The data suggest that patients with radiation-resistance gene alterations may derive minimal benefit from PORT, whereas patients with high TMB and/or alterations in DDR genes may benefit from PORT and be suited for future precision-RT strategies. Prospective studies are necessary to validate these findings.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/surgery , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Mutation , NF-E2-Related Factor 2/genetics , Prospective Studies
20.
Med Dosim ; 47(1): 26-31, 2022.
Article in English | MEDLINE | ID: mdl-34426041

ABSTRACT

Deep inspiration breath hold (DIBH) has dosimetric advantages for lung cancer patients treated with external beam therapy, but is difficult for many patients to perform. Proton therapy permits sparing of the downstream organs at risk (OAR). We compared conventionally fractionated proton (p) and photon(x) plans on both free breathing (FB) and DIBH planning CTs to determine the effect of DIBH with proton therapy. We evaluated 24 plans from 6 lung cancer patients treated with photon DIBH on a prospective protocol. All patients were re-planned using pencil beam scanning (PBS) proton therapy. New plans were generated for FB datasets with both modalities. All plans were renormalized to 60 Gy. We evaluated dosimetric parameters for heart, lung and esophagus. We also compared FBp to DIBHx parameters to quantify how FBp plans compare to DIBHx plans. Significant differences were found for lung metrics V20 and mean lung dose between FB and DIBH plans regardless of treatment modality. Furthermore, lung metrics for FBp were comparable or superior to DIBHx, suggesting that FB protons may be a viable alternative for those patients that cannot perform DIBH with IMRT. The heart dose metrics were significantly different for the 5 out of 6 patients where the PTV overlapped the heart as DIBH moved heart out of the high dose volume. Heart dose metrics were further reduced by proton therapy. DIBH offers similar relative advantages for lung sparing for PBS as it does for IMRT but the magnitude of the DIBH related gains in OAR sparing were smaller for PBS than IMRT. FBp plans offer similar or better lung and heart sparing compared to DIBHx plans. For IMRT patients who have difficulty performing DIBH, FB protons may offer an alternative.


Subject(s)
Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Breath Holding , Heart , Humans , Lung , Lung Neoplasms/radiotherapy , Organs at Risk , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...