Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 12(7): 908-914, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37358522

ABSTRACT

The ability to rationally design biomaterials to form desired supramolecular constructs presents an ever-growing research field, with many burgeoning works within recent years providing exciting results; however, there exists a broad expanse of promising avenues of research yet to be investigated. As such we have set out to make use of the polyproline helix as a rigid, tunable, and chiral ligand for the rational design and synthesis of supramolecular constructs. In this investigation, we show how an oligoproline tetramer can be specifically designed and functionalized, allowing predictable tuning of supramolecular interactions, to engineer the formation of supramolecular peptide frameworks with varying properties and, consequently, laying the groundwork for further studies utilizing the polyproline helix, with the ability to design desired supramolecular structures containing these peptide building blocks, having tunable structural features and functionalities.


Subject(s)
Peptides , Protein Engineering
2.
J Mater Chem B ; 11(17): 3958-3968, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37070387

ABSTRACT

Antimicrobial resistance is one of the greatest threats to human health. Gram-positive methicillin resistant Staphylococcus aureus (MRSA), in both its planktonic and biofilm form, is of particular concern. Herein we identify the hydrogelation properties for a series of intrinsically fluorescent, structurally related supramolecular self-associating amphiphiles and determine their efficacy against both planktonic and biofilm forms of MRSA. To further explore the potential translation of this hydrogel technology for real-world applications, the toxicity of the amphiphiles was determined against the eukaryotic multicellular model organism, Caenorhabditis elegans. Due to the intrinsic fluorescent nature of these supramolecular amphiphiles, material characterisation of their molecular self-associating properties included; comparative optical density plate reader assays, rheometry and widefield fluorescence microscopy. This enabled determination of amphiphile structure and hydrogel sol dependence on resultant fibre formation.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Humans , Microbial Sensitivity Tests , Biofilms , Caenorhabditis elegans , Plankton , Benzothiazoles
3.
Chemistry ; 28(66): e202202368, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36040298

ABSTRACT

The ability to use bio-inspired building blocks in the assembly of novel supramolecular frameworks is at the forefront of an exciting research field. Herein, we present the first polyproline helix to self-assemble into a reversibly porous, crystalline, supramolecular peptide framework (SPF). This framework is assembled from a short oligoproline, adopting the polyproline II conformation, driven by hydrogen-bonding and dispersion interactions. Thermal activation, guest-induced dynamic porosity and enantioselective guest inclusion have been demonstrated for this novel system. The principles of the self-assembly associated with this SPF will be used as a blueprint allowing for the further development of helical peptide linkers in the rational design of SPFs and metal-peptide frameworks.


Subject(s)
Peptides , Porosity , Hydrogen Bonding , Molecular Conformation
4.
Chemistry ; 28(64): e202201823, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-35984234

ABSTRACT

Accelerated ageing reactions that take place between two solid materials on contact in the absence of added solvent have been used to synthesize two spin-crossover-active 1D coordination polymers and one of their Cu(II) analogues. The hygroscopy of the ligands and the relative humidity of the reaction chamber have been shown to be particularly important factors in the rate of reaction. Small-scale reactions between a few individual crystals have allowed observation of deliquescence of the 4-aminotriazole ligand at high humidity. The metal salt does not dissolve, and the ligand diffuses into the crystal of the metal salt during the reaction. In the case of the Cu analogue, the formation of the product causes the crystal of the metal salt to deform with the formation of pseudocrystals, which have a fibrous structure.

5.
Chem Sci ; 13(11): 3176-3186, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414871

ABSTRACT

Herein we present co-crystallisation as a strategy for materials discovery in the field of switchable spin crossover (SCO) systems. Using [Fe(3-bpp)2]·2A (where 3-bpp = 2,6-bis(pyrazol-3-yl)pyridine, A = BF4 -/PF6 -) as a starting point, a total of 11 new cocrystals have been synthesised with five different dipyridyl coformers. Eight of these systems show spin crossover behaviour, and all show dramatically different switching properties from the parent complex. The cocrystals have been studied by variable temperature single-crystal X-ray diffraction and SQUID magnetometry to develop structure-property relationships. The supramolecular architecture of the cocrystals depends on the properties of the coformer. With linear, rigid coformer molecules leading to 1D supramolecular hydrogen-bonded chains, while flexible coformers form 2D sheets and bent coformers yield 3D network structures. The SCO behaviour of the cocrystals can be modified through changing the coformer and thus co-crystallisation presents a rapid, facile and highly modular tool for the discovery of new switchable materials. The wider applicability of this strategy to the design of hybrid multifunctional materials is also discussed.

6.
Dalton Trans ; 51(6): 2364-2369, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35043827

ABSTRACT

We report on a molecular cationic iron(II) complex with a 4-amino-1,2,4-triazole ligand and a tetraiodomercurate anion exhibiting an incomplete spin crossover (SCO). The complex exhibits an unusual disordered structure with a linear arrangement of ligand and water molecules that can potentially accommodate up to four iron atoms, but both terminal metal positions have half chemical occupancies, while occupancies of all ligands are full. This corresponds to the crystallisation of disordered trinuclear complexes arranged into 1D supramolecular chains. Iron cations have different N6 or N3O3 coordination environments, leading to the thermally induced SCO in two thirds of the metal centres. This SCO behaviour was characterised by magnetic susceptibility measurements and Mössbauer spectroscopy.

7.
Inorg Chem ; 60(12): 8665-8671, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34085813

ABSTRACT

The mononuclear cobalt complex of 3,5-di-tert-butylcathecolate and cyan-pyridine (Co(diox)2(4-CN-py)2) is a very versatile compound that displays valence tautomerism (VT) in the solid state, which is induced by temperature, light, and hard X-rays, and modulated by solvent in the crystal lattice. In our work, we used single crystal X-ray diffraction as a probe for the light-induced VT in solid state and demonstrate the controlled use of hard X-rays via attenuation to avoid X-ray-induced VT interconversion. We report photoinduced VT in benzene solvated crystals of Co(diox)2(4-CN-py)2 illuminated with blue 450 nm light at 30 K with a very high yield (80%) of metastable hs-CoII states, and we also show evidence of the de-excitation of these photoinduced metastable states using red 660 nm light. Such high-yield light-induced VT had never been experimentally observed in molecular crystals of cobalt tautomers, proving that the 450 nm light illumination is triggering a chain of events that leads to the ls-CoIII to hs-CoII interconversion.

8.
Phys Chem Chem Phys ; 23(4): 2775-2779, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33492320

ABSTRACT

Photoswitchable donor-acceptor Stenhouse adducts (DASAs) have been reported to exhibit an undesirable concentration dependence, where photoswitching is greatly inhibited with increasing photochrome concentration. Here we show that the use of piperazine-based donor moieties eliminates this concentration dependence and results in complete, rapid and reversible photoswitching behaviour for first generation DASAs, even in chlorinated solvents. Structural data and computational studies reveal proton transfer during isomerisation to the terminal amine rather than the donor amine. The improvement in photoswitching efficiency is attributed to resultant differences in supramolecular association.

9.
RSC Adv ; 11(16): 9550-9556, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423441

ABSTRACT

Supramolecular self-associating amphiphiles (SSAs) are a class of amphiphilic salt which have demonstrated antimicrobial activity against both Gram-positive and Gram-negative bacteria. Herein, we show that SSAs are also able to increase the efficacy of a range of currently used antimicrobial/therapeutic agents with a range of different chemical structures and modes of antimicrobial action against Gram-negative Escherichia coli, which include: octenidine (an antiseptic); ampicillin (an antibiotic); and cisplatin (a DNA chelating agent). Additionally, we show these effects to be dependent on the order of agent addition. Finally, through completion of a range of 1 : 1 SSA : antimicrobial/therapeutic agent physicochemical studies we gain an understanding as to how the self-association events and resultant SSA aggregate structure are effected by the presence of these secondary molecular species.

10.
ChemMedChem ; 15(22): 2193-2205, 2020 11 18.
Article in English | MEDLINE | ID: mdl-32930504

ABSTRACT

Herein we report 50 structurally related supramolecular self-associating amphiphilic (SSA) salts and related compounds. These SSAs are shown to act as antimicrobial agents, active against model Gram-positive (methicillin-resistant Staphylococcus aureus) and/or Gram-negative (Escherichia coli) bacteria of clinical interest. Through a combination of solution-state, gas-phase, solid-state and in silico measurements, we determine 14 different physicochemical parameters for each of these 50 structurally related compounds. These parameter sets are then used to identify molecular structure-physicochemical property-antimicrobial activity relationships for our model Gram-negative and Gram-positive bacteria, while simultaneously providing insight towards the elucidation of SSA mode of antimicrobial action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Hydrogen Bonding , Microbial Sensitivity Tests , Molecular Structure , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
11.
Dalton Trans ; 49(9): 2966-2971, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32073086

ABSTRACT

A facile method for post-synthetic exchange of anions in an iron(ii) spin crossover material using mechanochemistry is described. Dry grinding of the [Fe(atrz)3]Cl2 complex (atrz = 4-amino-1,2,4-triazole) in the presence of an excess of sodium halide salt results in the complete exchange of anions and formation of [Fe(atrz)3]Br2 and [Fe(atrz)3]I2 in a solid-state metathesis reaction. The method represents a new strategy for tuning active switching properties such as the transition temperature in spin crossover systems. Formation of stable by-products was identified as a major driving force for exchange and a straightforward method to predict the likely outcome of such reactions using simple thermodynamic considerations is presented.

12.
Chemistry ; 25(41): 9597-9601, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31111974

ABSTRACT

A metastable form of 9-fluorenone (MS9F) has been characterized using Raman spectroscopy, fluorimetry, and X-ray diffraction techniques. MS9F emits blue fluorescence (λmax =495 nm) upon 365 nm irradiation and undergoes a single-crystal-to-single-crystal (SCSC) transformation to reach the ground state form (GS9F) over approximately 30 minutes, whereupon it emits the expected green fluorescence. A structure-property relationship for this fluorescent behavior has been posited. MS9F and GS9F were applied as a means of visualizing latent fingermarks on a nonporous surface. This approach identified three different modes of fluorescent fingermark visualization using 9-fluorenone.

13.
Chemistry ; 25(2): 495-500, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30362193

ABSTRACT

This report presents a new library of organometallic iridium(III) compounds of the type [Cp*IrCl(L)] (Cp*=pentamethylcyclopentadienyl and L=a functionalized ß-ketoiminato ligand) showing moderate to high cytotoxicity against a range of cancer cell lines. All compounds show increased activity towards colorectal cancer, with preferential activity observed against the immortalized p53-null colorectal cell line, HCT116 p53-/-, with sensitivity factors (SF) up to 26.7. Additionally, the compounds have excellent selectivity for cancerous cells when tested against normal cell types, with selectivity ratios (SR) up to 35.6, contrary to that of cisplatin, which is neither selective nor specific for cancerous cells (SF=0.43 and SR=0.7-2.3). This work provides a preliminary understanding of the cytotoxicity of iridium compounds in the absence of p53 and has potential applications in treatment of cancers for which the p53 gene is absent or mutant.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Imines/chemistry , Iridium/chemistry , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Crystallography, X-Ray , HCT116 Cells , Humans , Molecular Conformation , Thioredoxin Reductase 1/antagonists & inhibitors , Thioredoxin Reductase 1/metabolism , Tumor Suppressor Protein p53/deficiency
14.
Chem Commun (Camb) ; 55(1): 95-98, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30512024

ABSTRACT

Herein, we identify supramolecular self-associating amphiphiles (SSAs) as a novel class of antibacterials with activity towards methicillin-resistant Staphylococcus aureus. Structure-activity relationships have been identified in the solid, solution and gas phases. Finally, we show that when supplied in combination, SSAs exhibit increased antibacterial efficacy against these clinically relevant microbes.


Subject(s)
Anthracenes/chemistry , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Anthracenes/chemical synthesis , Anthracenes/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microscopy, Fluorescence , Molecular Conformation , Quaternary Ammonium Compounds/chemistry , Structure-Activity Relationship
15.
Inorg Chem ; 57(18): 11530-11536, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30188696

ABSTRACT

Phosphane-stabilized phosphenium cations react with silanes to effect either reduction to primary or secondary phosphanes, or formation of P-P bonded species depending upon counteranion. This operates for in situ generated phosphenium cations, allowing catalytic reduction of P(III)-Cl bonds in the absence of strong reducing agents. Anion and substituent dependence studies have allowed insight into the competing mechanisms involved.

16.
Inorg Chem ; 57(14): 8581-8587, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29969251

ABSTRACT

The use of a new second-sphere coordination methodology for emission color tuning of iridium complexes is presented. We demonstrate that a complementary H-bonding guest molecule binding through contiguous triple H-bonding interactions can induce a shift in the emission of the iridium complex from green to blue without the need to alter the ligand structure around the metal center, while simultaneously increasing the photoluminescence quantum yield in solution. The association constant for this host-guest interaction was determined to be Ka = 4.3 × 103 M-1 in a solution of 2% dimethyl sulfoxide in chloroform by UV-vis titration analysis and the impact of the hydrogen bonding interaction further probed by photoluminescence, electrochemical, and computational methods. Our findings suggest that directed self-assemblies are an effective approach to influencing emission properties of phosphorescent iridium(III) complexes.

17.
J Am Chem Soc ; 140(28): 8970-8979, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29920196

ABSTRACT

Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus ( B = 11.5 ± 1.5 GPa), Young's modulus ( Y = 10.9 ± 1.0 GPa), and Poisson's ratio (ν = 0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules as well as by the distribution of the stiffest C-H···N interactions in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young's modulus to 7.1 ± 0.5 GPa both in bulk and thin film samples. The results highlight the application potential of these films in terms of strain (ε = -0.17 ± 0.05%), recoverable stress (σ = -21 ± 1 MPa), and work density ( W/V = 15 ± 6 mJ/cm3).

18.
Chemistry ; 24(30): 7761-7773, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29633393

ABSTRACT

Through this extensive structure-property study we show that critical micelle concentration correlates with self-associative hydrogen bond complex formation constant, when combined with outputs from low level, widely accessible, computational models. Herein, we bring together a series of 39 structurally related molecules related by stepwise variation of a hydrogen bond donor-acceptor amphiphilic salt. The self-associative and corresponding global properties for this family of compounds have been studied in the gas, solid and solution states. Within the solution state, we have shown the type of self-associated structure present to be solvent dependent. In DMSO, this class of compound show a preference for hydrogen bonded dimer formation, however moving into aqueous solutions the same compounds are found to form larger self-associated aggregates. This observation has allowed us the unique opportunity to investigate and begin to predict self-association events at both the molecular and extended aggregate level.

19.
Chem Commun (Camb) ; 54(2): 180-183, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29219155

ABSTRACT

We describe the synthesis of switchable spin crossover materials via mechanochemistry for the first time. Three chemically diverse spin crossover materials have been produced using solvent-free grinding. Crucially, cooperative spin transition behavior and crystallinity is retained, presenting exciting opportunities for the discovery of new materials with switchable magnetic, optical and structural properties.

20.
J Phys Chem Lett ; 8(19): 4774-4778, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28910116

ABSTRACT

Valence tautomeric interconversion (VTI) is a reversible process occurring in metal complexes in which an intramolecular metal-ligand electron transfer is accompanied by a change of metal ion spin state, creating two switchable electronic states (redox isomers). Herein, we describe the low-temperature, 30-100 K, single-crystal study of the [Co(diox)2(4-CN-py)2]·benzene complex (1) (diox = 3,5-di-t-butylsemiquinonate (SQ•-) and/or 3,5-di-t-butylcatecholate (Cat2-) radical; 4-CN-py = 4-cyano-pyridine) using hard synchrotron X-ray radiation with different intensities. We demonstrate for the first time that hard X-rays can induce VTI, and that the interconversion molar fraction is dependent on both intensity and exposure time. This in turn shows that X-rays, as a probe, might be altering the very nature of many structures under investigation at low temperatures, and consequently their properties. Our findings add new perspectives to VTI studies and might be of significant interest to the entire community investigating photoresponsive complexes.

SELECTION OF CITATIONS
SEARCH DETAIL