Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 146: 145-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26752082

ABSTRACT

We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and (208)Pb/(206)Pb, (207)Pb/(206)Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5-8 years, living in NE England. By integrating the isotope data with histological analysis of the teeth, using the daily incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 2-3 years for molars, first 1-2 years for incisors+pre-natal growth). Significant differences were observed in the isotope composition and concentration of Pb between children, reflecting differences in the timing and sources of exposure during early childhood. Those born in 2000, after the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (<0.2µgPb/g) with (208)Pb/(206)Pb (mean ±2σ: 2.126-2.079) (208)Pb/(206)Pb (mean ±2σ: 0.879-0.856) ratios that correlate very closely with modern day Western European industrial aerosols (PM10, PM2.5) suggesting that diffuse airborne pollution was probably the primary source and exposure pathway. Legacy lead, if present, is insignificant. For those born in 1997, dentine lead levels are typically higher (>0.4µgPb/g) with (208)Pb/(206)Pb (mean ±2σ: 2.145-2.117) (208)Pb/(206)Pb (mean ±2σ: 0.898-0.882) ratios that can be modelled as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high intensity exposure events (1-2 months) were readily identified, together with evidence that dentine provides a good proxy for childhood changes in the isotope composition of blood Pb. Our pilot study confirms that laser ablation Pb isotope analysis of deciduous teeth, when carried out in conjunction with histological analysis, permits a reconstruction of the timing, duration and source of exposure to Pb during early childhood. With further development, this approach has the potential to study larger cohorts and appraise environments where the levels of exposure to Pb are much higher.


Subject(s)
Air Pollutants/metabolism , Dental Enamel/chemistry , Dentin/chemistry , Environmental Exposure , Lead/metabolism , Tooth, Deciduous/chemistry , Aerosols/analysis , Child , Child, Preschool , Cohort Studies , England , Environmental Monitoring , Female , Fetus/metabolism , Humans , Isotopes/metabolism , Mass Spectrometry , Pilot Projects , Pregnancy
2.
Sci Total Environ ; 425: 214-22, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22475218

ABSTRACT

Data are presented to demonstrate that the circumpulpal dentine of deciduous teeth can be used to reconstruct a detailed record of childhood exposure to lead. By combining high spatial resolution laser ablation ICP-MS with dental histology, information was acquired on the concentration of lead in dentine from in utero to several years after birth, using a true time template of dentine growth. Time corrected lead analyses for pairs of deciduous molars confirmed that between-tooth variation for the same child was negligible and that meaningful exposure histories can be obtained from a single, multi-point ablation transect on longitudinal sections of individual teeth. For a laser beam of 100 µm diameter, the lead signal for each ablation point represented a time span of 42 days. Simultaneous analyses for Sr, Zn and Mg suggest that the incorporation of Pb into dentine (carbonated apatite) is most likely controlled by nanocrystal growth mechanisms. The study also highlights the importance of discriminating between primary and secondary dentine and the dangers of translating lead analyses into blood lead estimates without determining the age or duration of dentine sampled. Further work is in progress to validate deciduous teeth as blood lead biomarkers.


Subject(s)
Dentin/chemistry , Environmental Exposure/analysis , Lead/analysis , Lead/toxicity , Mass Spectrometry/methods , Tooth, Deciduous/chemistry , Biomarkers/analysis , Child , Dentin, Secondary , Humans , Laser Therapy , Lead/pharmacokinetics , Magnesium/analysis , Strontium/analysis , Tooth, Deciduous/drug effects , Zinc/analysis
3.
Sci Total Environ ; 407(17): 4882-93, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19524999

ABSTRACT

High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ((208)Pb/(206)Pb, (207)Pb/(206)Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ((208)Pb/(206)Pb, (207)Pb/(206)Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.


Subject(s)
Lead/analysis , Water Pollutants, Chemical/analysis , England , Fresh Water/chemistry , Geologic Sediments/chemistry , Isotopes/analysis
4.
Nature ; 417(6887): 432-6, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12024211

ABSTRACT

During the last decade, sensitive techniques for detecting DNA have been successfully applied to archaeological and other samples that were a few hundred to a few thousand years old. Nevertheless, there is still controversy and doubt over claims of exceptionally ancient DNA. Additional accounts stretching back nearly a century suggest that microorganisms may survive over geological time in evaporite deposits. There is, however, often doubt over the age relationship between evaporite formation and the incorporation of microorganisms. Here, we have used petrographic and geochemical techniques (laser ablation microprobe inductively coupled plasma mass spectrometry) to verify the estimated geological age of halite (NaCl) evaporite samples. Fragments of 16S ribosomal RNA genes were detected by polymerase chain reaction amplification of DNA extracted from halite samples ranging in age from 11 to 425 Myr (millions of years). Haloarchaeal 16S rDNA amplicons were present in one sample (11 16 Myr), whereas other samples (65 425 Myr) yielded only bacterial 16S rDNA amplicons. Terminal restriction fragment length polymorphism analyses indicate complex and different populations of microorganisms or their free DNA in ancient halites of different ages.


Subject(s)
DNA, Ribosomal/isolation & purification , Fossils , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/isolation & purification , Sodium Chloride , Brazil , DNA, Archaeal/genetics , DNA, Archaeal/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Ribosomal/genetics , Michigan , Molecular Sequence Data , Phylogeny , Poland , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Thailand , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...