Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Faraday Discuss ; (119): 287-303; discussion 353-70, 2001.
Article in English | MEDLINE | ID: mdl-11877997

ABSTRACT

Temperature and concentration fields have been investigated in the cylindrical combustion chamber of a rapid compression machine (RCM) by schlieren photography, chemiluminescent imaging and planar laser induced fluorescence of acetone and of formaldehyde in a 2-dimensional sheet across the diameter. The timescale of particular interest was up to 10 ms after the piston has stopped. Experiments were performed in non-reactive and reactive conditions. Acetone was seeded in non-reactive mixtures. Combustion was studied first in a system containing di-tert-butyl peroxide vapour in the presence of oxygen. The decomposition of di-tert-butyl peroxide generates methyl radicals, which are then oxidised if oxygen is present. The overall reaction is exothermic and is characteristic of a conventional thermal ignition. In addition, chemiluminescence, resulting from CH2O*, accompanies the oxidation process. The combustion of n-pentane was then investigated at compressed gas temperatures that spanned the range in which there is a negative temperature dependence of the overall reaction rate, typically 750-850 K. The response to thermal feedback in this more complex thermokinetic system can be the opposite of the "thermal runaway" that accompanies di-tert-butyl peroxide combustion. The purpose of making comparisons between these two types of systems was to show how the temperature field generated in the RCM is modified in different ways by the interaction with the chemistry and to discuss the implications of this for the spatial development of spontaneous ignition. As the piston of the RCM moves it shears gas off the walls of the chamber. This probably creates a roll-up vortex, but more importantly it also collects gas from the walls and moves it across the cylinder head pushing it forward into a plug at the centre. Thus, soon after the end of compression there is an adiabatically heated gas which extends virtually to the wall, but this incorporates a plug of colder gas at its core. Diffusive transport will occur, but the timescale is relatively slow, and the effect hardly shows until at least 10 ms post-compression. The consequence of "thermal runaway" on a timescale that is compatible with the development of this temperature field is that the reaction rate in the adiabatically compressed toroidal region accelerates faster than in the core, and goes to completion first. A somewhat similar pattern emerges during n-pentane combustion when the initial condition is set at the lower end of the negative temperature dependent range. By contrast, at adiabatically compressed gas temperatures close to the upper end of the negative temperature dependent region, the reaction rate in the cooler core develops faster than that in the surrounding zone, and the temperature difference is rapidly smoothed out. This does not lead to spatial homogeneity in all respects, however, because different rates and extents of reaction generate different concentrations of intermediates. This stratification has implications for the eventual spatial evolution of spontaneous ignition.

2.
J Perinatol ; 14(5): 386-92, 1994.
Article in English | MEDLINE | ID: mdl-7830154

ABSTRACT

The umbilical artery Doppler ultrasonographic gradient has been described, and the need for site-specific nomograms has been pointed out. However, controversy still exists about the cause of this phenomenon and the optimal site for obtaining umbilical artery Doppler ultrasonographic measurements. Cross-sectional measurements of umbilical artery flow velocity waveform (FVW) systolic/diastolic (S/D) ratios were therefore made in 35 gravid women during the second or third trimester of pregnancy with both duplex pulsed-wave (PW) and free-standing continuous-wave (CW) Doppler ultrasonographic equipment. Multiple duplex PW Doppler ultrasonographic signals were recorded at the abdominal cord insertion, placental cord insertion, and free cord sites. Multiple CW Doppler FVWs were obtained from four quadrants, in decreasing order of ease of measurement. Repeated-measures analysis of variance demonstrated a statistically significant decrease in mean and median values of the umbilical artery S/D ratio from the abdominal cord insertion site to the placental cord insertion site. The reduction in the value of the S/D ratio as the placental cord insertion site is approached results more from a decrease in the peak systolic maximum velocity envelope than from an increase in diastolic velocities. Moreover, mean and median CW Doppler ultrasonographic values correlate most closely with corresponding PW measurements of the free cord segment. These data confirm the presence of the umbilical artery Doppler ultrasonographic gradient. Decreasing values of the S/D ratio from the fetal abdomen to the placenta are a result of attenuation of the systolic maximum velocity envelope.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Ultrasonography, Doppler, Duplex , Ultrasonography, Doppler, Pulsed , Ultrasonography, Prenatal/methods , Umbilical Arteries/diagnostic imaging , Adult , Blood Flow Velocity/physiology , Female , Humans , Placental Circulation , Pregnancy
3.
Minn Med ; 66(3): 149-51, 1983 Mar.
Article in English | MEDLINE | ID: mdl-6855728
4.
Minn Med ; 50(7): 1143-7, 1967 Jul.
Article in English | MEDLINE | ID: mdl-6046252

Subject(s)
Medicine , United States
SELECTION OF CITATIONS
SEARCH DETAIL