Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(D1): D765-D770, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34634797

ABSTRACT

The COVID-19 pandemic has seen unprecedented use of SARS-CoV-2 genome sequencing for epidemiological tracking and identification of emerging variants. Understanding the potential impact of these variants on the infectivity of the virus and the efficacy of emerging therapeutics and vaccines has become a cornerstone of the fight against the disease. To support the maximal use of genomic information for SARS-CoV-2 research, we launched the Ensembl COVID-19 browser; the first virus to be encompassed within the Ensembl platform. This resource incorporates a new Ensembl gene set, multiple variant sets, and annotation from several relevant resources aligned to the reference SARS-CoV-2 assembly. Since the first release in May 2020, the content has been regularly updated using our new rapid release workflow, and tools such as the Ensembl Variant Effect Predictor have been integrated. The Ensembl COVID-19 browser is freely available at https://covid-19.ensembl.org.


Subject(s)
COVID-19/virology , Databases, Genetic , SARS-CoV-2/genetics , Web Browser , Coronaviridae/genetics , Genetic Variation , Genome, Viral , Humans , Molecular Sequence Annotation
2.
Nucleic Acids Res ; 49(D1): D884-D891, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33137190

ABSTRACT

The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Genomics/methods , SARS-CoV-2/genetics , Vertebrates/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Humans , Internet , Molecular Sequence Annotation/methods , Pandemics , Vertebrates/classification
3.
Nucleic Acids Res ; 48(D1): D682-D688, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691826

ABSTRACT

The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.


Subject(s)
Computational Biology/methods , Databases, Genetic , Epigenome , Molecular Sequence Annotation , Algorithms , Animals , Computer Graphics , Databases, Protein , Genetic Variation , Genome-Wide Association Study , Genomics , Histones/metabolism , Humans , Imaging, Three-Dimensional , Internet , Ligands , Search Engine , Software , Species Specificity , Transcriptome , User-Computer Interface , Web Browser
4.
Nucleic Acids Res ; 47(D1): D745-D751, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30407521

ABSTRACT

The Ensembl project (https://www.ensembl.org) makes key genomic data sets available to the entire scientific community without restrictions. Ensembl seeks to be a fundamental resource driving scientific progress by creating, maintaining and updating reference genome annotation and comparative genomics resources. This year we describe our new and expanded gene, variant and comparative annotation capabilities, which led to a 50% increase in the number of vertebrate genomes we support. We have also doubled the number of available human variants and added regulatory regions for many mouse cell types and developmental stages. Our data sets and tools are available via the Ensembl website as well as a through a RESTful webservice, Perl application programming interface and as data files for download.


Subject(s)
Databases, Genetic , Genome/genetics , Genomics , Vertebrates/genetics , Animals , Computational Biology/trends , Humans , Mice , Molecular Sequence Annotation , Software
5.
Database (Oxford) ; 20182018 01 01.
Article in English | MEDLINE | ID: mdl-30576484

ABSTRACT

The major goal of sequencing humans and many other species is to understand the link between genomic variation, phenotype and disease. There are numerous valuable and well-established variation resources, but collating and making sense of non-homogeneous, often large-scale data sets from disparate sources remains a challenge. Without a systematic catalogue of these data and appropriate query and annotation tools, understanding the genome sequence of an individual and assessing their disease risk is impossible. In Ensembl, we substantially solve this problem: we develop methods to facilitate data integration and broad access; aggregate information in a consistent manner and make it available a variety of standard formats, both visually and programmatically; build analysis pipelines to compare variants to comprehensive genomic annotation sets; and make all tools and data publicly available.


Subject(s)
Database Management Systems , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , Algorithms , Humans , Sequence Analysis, DNA , User-Computer Interface
6.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29155950

ABSTRACT

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Subject(s)
Databases, Genetic , Datasets as Topic , Genome , Information Dissemination , Animals , Epigenomics , Genome, Human , Genome-Wide Association Study , Genomics , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Vertebrates/genetics , Web Browser
7.
Article in English | MEDLINE | ID: mdl-26888907

ABSTRACT

New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl's regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org. Database URL: http://www.ensembl.org.


Subject(s)
Computational Biology/methods , DNA/analysis , Databases, Genetic , Amino Acid Motifs , Animals , DNA Methylation , Epigenesis, Genetic , Epigenomics , Genome , Genome, Human , Genomics , Histones/chemistry , Humans , Mice , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis
8.
Nucleic Acids Res ; 42(Database issue): D771-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24316575

ABSTRACT

The Vertebrate Genome Annotation (VEGA) database (http://vega.sanger.ac.uk), initially designed as a community resource for browsing manual annotation of the human genome project, now contains five reference genomes (human, mouse, zebrafish, pig and rat). Its introduction pages have been redesigned to enable the user to easily navigate between whole genomes and smaller multi-species haplotypic regions of interest such as the major histocompatibility complex. The VEGA browser is unique in that annotation is updated via the Human And Vertebrate Analysis aNd Annotation (HAVANA) update track every 2 weeks, allowing single gene updates to be made publicly available to the research community quickly. The user can now access different haplotypic subregions more easily, such as those from the non-obese diabetic mouse, and display them in a more intuitive way using the comparative tools. We also highlight how the user can browse manually annotated updated patches from the Genome Reference Consortium (GRC).


Subject(s)
Databases, Genetic , Genome , Molecular Sequence Annotation , Animals , Genome, Human , Genomics , Humans , Internet , Mice , Mice, Inbred NOD , Mice, Knockout , Rats , Swine/genetics , Zebrafish/genetics
9.
Database (Oxford) ; 2013: bat032, 2013.
Article in English | MEDLINE | ID: mdl-23729657

ABSTRACT

Model organisms are becoming increasingly important for the study of complex diseases such as type 1 diabetes (T1D). The non-obese diabetic (NOD) mouse is an experimental model for T1D having been bred to develop the disease spontaneously in a process that is similar to humans. Genetic analysis of the NOD mouse has identified around 50 disease loci, which have the nomenclature Idd for insulin-dependent diabetes, distributed across at least 11 different chromosomes. In total, 21 Idd regions across 6 chromosomes, that are major contributors to T1D susceptibility or resistance, were selected for finished sequencing and annotation at the Wellcome Trust Sanger Institute. Here we describe the generation of 40.4 mega base-pairs of finished sequence from 289 bacterial artificial chromosomes for the NOD mouse. Manual annotation has identified 738 genes in the diabetes sensitive NOD mouse and 765 genes in homologous regions of the diabetes resistant C57BL/6J reference mouse across 19 candidate Idd regions. This has allowed us to call variation consequences between homologous exonic sequences for all annotated regions in the two mouse strains. We demonstrate the importance of this resource further by illustrating the technical difficulties that regions of inter-strain structural variation between the NOD mouse and the C57BL/6J reference mouse can cause for current next generation sequencing and assembly techniques. Furthermore, we have established that the variation rate in the Idd regions is 2.3 times higher than the mean found for the whole genome assembly for the NOD/ShiLtJ genome, which we suggest reflects the fact that positive selection for functional variation in immune genes is beneficial in regard to host defence. In summary, we provide an important resource, which aids the analysis of potential causative genes involved in T1D susceptibility. Database URLs: http://www.sanger.ac.uk/resources/mouse/nod/; http://vega-previous.sanger.ac.uk/info/data/mouse_regions.html#Idd


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genetic Variation , Molecular Sequence Annotation , Animals , Base Pairing/genetics , Base Sequence , Genetic Loci/genetics , Genome/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Polymorphism, Single Nucleotide/genetics , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...