Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Aging ; 3: 866823, 2022.
Article in English | MEDLINE | ID: mdl-35821847

ABSTRACT

Cataract removal surgery is one of the most commonly performed surgical procedure in developed countries. The financial and staff resource cost that first-eye cataract surgery incurs, leads to restricted access to second-eye cataract surgery (SES) in some areas, including the United Kingdom. These restrictions have been imposed despite a lack of knowledge about the impact of not performing SES on visuo-motor function. To this end, a systematic literature review was carried out, with the aim of synthesising our present understanding of the effects of SES on motor function. Key terms were searched across four databases, PsycINFO, Medline, Web of Science, and CINAHL. Of the screened studies (K = 499) 13 met the eligibility criteria. The homogeneity between participants, study-design and outcome measures across these studies was not sufficient for meta-analyses and a narrative synthesis was carried out. The evidence from objective sources indicates a positive effect of SES on both mobility and fall rates, however, when considering self-report measures, the reduction in falls associated with SES becomes negligible. The evidence for any positive effect of SES on driving is also mixed, whereby SES was associated with improvements in simulated driving performance but was not associated with changes in driving behaviours measured through in vehicle monitoring. Self-report measures of driving performance also returned inconsistent results. Whilst SES appears to be associated with a general trend towards improved motor function, more evidence is needed to reach any firm conclusions and to best advise policy regarding access to SES in an ageing population. Systematic Review Registration: https://osf.io/7hne6/, identifier INPLASY2020100042.

2.
PLoS One ; 16(11): e0258678, 2021.
Article in English | MEDLINE | ID: mdl-34748569

ABSTRACT

PURPOSE: Many people experience unilateral degraded vision, usually owing to a developmental or age-related disorder. There are unresolved questions regarding the extent to which such unilateral visual deficits impact on sensorimotor performance; an important issue as sensorimotor limitations can constrain quality of life by restricting 'activities of daily living'. Examination of the relationship between visual deficit and sensorimotor performance is essential for determining the functional implications of ophthalmic conditions. This study attempts to explore the effect of unilaterally degraded vision on sensorimotor performance. METHODS: In Experiment 1 we simulated visual deficits in 30 participants using unilateral and bilateral Bangerter filters to explore whether motor performance was affected in water pouring, peg placing, and aiming tasks. Experiment 2 (n = 74) tested the hypothesis that kinematic measures are associated with visuomotor deficits by measuring the impact of small visual sensitivity decrements created by monocular viewing on sensorimotor interactions with targets presented on a planar surface in aiming, tracking and steering tasks. RESULTS: In Experiment 1, the filters caused decreased task performance-confirming that unilateral (and bilateral) visual loss has functional implications. In Experiment 2, kinematic measures were affected by monocular viewing in two of three tasks requiring rapid online visual feedback (aiming and steering). CONCLUSIONS: Unilateral visual loss has a measurable impact on sensorimotor performance. The benefits of binocular vision may be particularly important for some groups (e.g. older adults) where an inability to complete sensorimotor tasks may necessitate assisted living. There is an urgent need to develop rigorous kinematic approaches to the quantification of the functional impact of unilaterally degraded vision and of the benefits associated with treatments for unilateral ophthalmic conditions to enable informed decisions around treatment.


Subject(s)
Psychomotor Performance/physiology , Vision Disorders/physiopathology , Vision, Binocular/physiology , Vision, Monocular/physiology , Activities of Daily Living , Adolescent , Biomechanical Phenomena , Eye/physiopathology , Female , Humans , Male , Quality of Life , Task Performance and Analysis , Vision Disorders/diagnostic imaging , Young Adult
3.
Sci Rep ; 11(1): 263, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420150

ABSTRACT

Automated vehicles (AVs) will change the role of the driver, from actively controlling the vehicle to primarily monitoring it. Removing the driver from the control loop could fundamentally change the way that drivers sample visual information from the scene, and in particular, alter the gaze patterns generated when under AV control. To better understand how automation affects gaze patterns this experiment used tightly controlled experimental conditions with a series of transitions from 'Manual' control to 'Automated' vehicle control. Automated trials were produced using either a 'Replay' of the driver's own steering trajectories or standard 'Stock' trials that were identical for all participants. Gaze patterns produced during Manual and Automated conditions were recorded and compared. Overall the gaze patterns across conditions were very similar, but detailed analysis shows that drivers looked slightly further ahead (increased gaze time headway) during Automation with only small differences between Stock and Replay trials. A novel mixture modelling method decomposed gaze patterns into two distinct categories and revealed that the gaze time headway increased during Automation. Further analyses revealed that while there was a general shift to look further ahead (and fixate the bend entry earlier) when under automated vehicle control, similar waypoint-tracking gaze patterns were produced during Manual driving and Automation. The consistency of gaze patterns across driving modes suggests that active-gaze models (developed for manual driving) might be useful for monitoring driver engagement during Automated driving, with deviations in gaze behaviour from what would be expected during manual control potentially indicating that a driver is not closely monitoring the automated system.

4.
J Surg Educ ; 78(3): 980-986, 2021.
Article in English | MEDLINE | ID: mdl-33020038

ABSTRACT

OBJECTIVE: The ability to simulate procedures in silico has transformed surgical training and practice. Today's simulators, designed for the training of a highly specialized set of procedures, also present a powerful scientific tool for understanding the neural control processes that underpin the learning and application of surgical skills. Here, we examined whether 2 simulators designed for training in 2 different surgical domains could be used to examine the extent to which fundamental sensorimotor skills transcend surgical specialty. DESIGN, SETTING & PARTICIPANTS: We used a high-fidelity virtual reality dental simulator and a laparoscopic box simulator to record the performance of 3 different groups. The groups comprised dentists, laparoscopic surgeons, and psychologists (each group n = 19). RESULTS: The results revealed a specialization of performance, with laparoscopic surgeons showing the highest performance on the laparoscopic box simulator, while dentists demonstrated the highest skill levels on the virtual reality dental simulator. Importantly, we also found that a transfer learning effect, with laparoscopic surgeons and dentists showing superior performance to the psychologists on both tasks. CONCLUSIONS: There are core sensorimotor skills that cut across surgical specialty. We propose that the identification of such fundamental skills could lead to improved training provision prior to specialization.


Subject(s)
Laparoscopy , Simulation Training , Virtual Reality , Clinical Competence , Computer Simulation , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL