Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 43(3): 474-477, 2022 03.
Article in English | MEDLINE | ID: mdl-35086800

ABSTRACT

BACKGROUND AND PURPOSE: As a result of the coronavirus disease 2019 (COVID-19) pandemic, many radiology departments shifted to working a portion of clinical assignments from home. To determine the effect of working from home on performance, productivity, quality, and safety, we evaluated turnaround time, volume of studies, and error rates on rotations worked from home compared with in the hospital. MATERIALS AND METHODS: The number of studies interpreted per day for each neuroradiologist, turnaround times, and error rates reported to peer learning was identified from April 1, 2020, through September 30, 2020. For each neuroradiologist, mean turnaround times and volumes per day at home versus in the hospital were compared. Similar comparison was performed for STAT studies. RESULTS: During the time period, 2597 CTs (1897 at home, 700 in the hospital) and 3685 MRIs (2601 at home, 1084 in the hospital) were read. By individual neuroradiologists, 57% (4/7) had shorter turnaround time at home and 57% (4/7) demonstrated an increase in the mean number of studies per day read at home. No statistically significant difference was noted in the neuroradiologists' performance while reading STAT studies. Reported error rates were not found to be higher at home, with statistically significantly lower rates when working at home (P = .018). CONCLUSIONS: Variable productivity and performance of neuroradiologists when working from home versus in the hospital were found, being 57% faster and/or more productive while working at home without an increase in error rates. The decision to work at home versus in the hospital may best be based on local factors, balancing the variability among individual neuroradiologist's and the institution's needs, recognizing that working from home is not a one-size-fits-all phenomenon but requires adaptability for successful implementation.


Subject(s)
COVID-19 , Pandemics , Child , Hospitals , Humans , Pandemics/prevention & control , Radiologists , SARS-CoV-2
2.
Q J Nucl Med Mol Imaging ; 57(4): 352-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24322792

ABSTRACT

Primary breast cancer often displays only moderately increased glucose metabolism resulting in a low sensitivity of positron emission tomography (PET) using [F-18]fluorodeoxyglucose (FDG) in detecting small breast carcinomas, locoregional micrometastases and non-enlarged tumor infiltrated lymphnodes. In contrast, distant breast cancer metastases are generally characterized by significantly increased metabolic activity compared to normal tissue. Therefore, FDG-PET provides accurate diagnostic information as a whole body imaging modality in staging of breast cancer patients. The metabolic information from FDG-PET/CT is often more sensitive than conventional imaging for the detection of distant metastases, particularly in the recurrent setting. FDG-PET is superior in detecting tumor-involved distant lymphnodes, particularly those which are normal in size, as well as in characterizing enlarged lymphnodes as positive or negative for malignancy. Of note, CT is superior in detecting small lung metastases. Although the overall sensitivity for bone scintigraphy and FDG-PET are comparable, bone scintigraphy seems to be superior in the detection of osteoblastic disease whereas FDG-PET is superior for osteolytic metastases, suggesting a complementary role for both imaging procedures. FDG-PET/MR has an evolving role in breast cancer management, for example in the detection of liver metastases and in the research setting for treatment monitoring. The utilization of PET for prediction of treatment response to primary chemotherapy is an area of active research, using FDG as well as other PET biomarkers including [F-18]Fluoroestradiol, [F-18]Fluorothymidine and integrin targeting tracer for monitoring anti-angiogenic therapy.


Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18/pharmacokinetics , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Neoplasm Recurrence, Local , Positron-Emission Tomography/methods , Biomarkers, Tumor/analysis , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/secondary , Female , Humans , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/metabolism , Radiopharmaceuticals/pharmacokinetics , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...