Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Clin Oncol ; 41(23): 3945-3955, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37315268

ABSTRACT

PURPOSE: The multicenter OPTIMUM (MUKnine) phase II trial investigated daratumumab, low-dose cyclophosphamide, lenalidomide, bortezomib, and dexamethasone (Dara-CVRd) before and after autologous stem-cell transplant (ASCT) in newly diagnosed patients with molecularly defined ultra-high-risk (UHiR) multiple myeloma (NDMM) or plasma cell leukemia (PCL). To provide clinical context, progression-free survival (PFS) and overall survival (OS) were referenced to contemporaneous outcomes seen in patients with UHiR NDMM treated in the recent Myeloma XI (MyeXI) trial. METHODS: Transplant-eligible all-comers NDMM patients were profiled for UHiR disease, defined by presence of ≥2 genetic risk markers t(4;14)/t(14;16)/t(14;20), del(1p), gain(1q), and del(17p), and/or SKY92 gene expression risk signature. Patients with UHiR MM/PCL were offered treatment with Dara-CVRd induction, V-augmented ASCT, extended Dara-VR(d) consolidation, and Dara-R maintenance. UHiR patients treated in MyeXI with carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide, or lenalidomide, dexamethasone, and cyclophosphamide, ASCT, and R maintenance or observation were identified by mirrored molecular screening. OPTIMUM PFS at 18 months (PFS18m) was compared against MyeXI using a Bayesian framework, and patients were followed up to the end of consolidation for PFS and OS. RESULTS: Of 412 screened NDMM OPTIMUM patients, 103 were identified as UHiR or PCL and subsequently treated on trial with Dara-CVRd; 117 MyeXI patients identified as UHiR formed the external comparator arm, with comparable clinical and molecular characteristics to OPTIMUM. Comparison of PFS18m per Bayesian framework resulted in a 99.5% chance of OPTIMUM being superior to MyeXI. At 30 months' follow-up, PFS was 77% for OPTIMUM versus 39.8% for MyeXI, and OS 83.5% versus 73.5%, respectively. Extended post-ASCT Dara-VRd consolidation therapy was highly deliverable, with limited toxicity. CONCLUSION: Our results suggest that Dara-CVRd induction and extended post-ASCT Dara-VRd consolidation markedly improve PFS for UHiR NDMM patients over conventional management, supporting further evaluation of this strategy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/diagnosis , Lenalidomide , Bortezomib , Bayes Theorem , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cyclophosphamide/adverse effects , Dexamethasone , Transplantation, Autologous , Hematopoietic Stem Cell Transplantation/adverse effects
2.
Leukemia ; 35(7): 2043-2053, 2021 07.
Article in English | MEDLINE | ID: mdl-33262523

ABSTRACT

Structural chromosomal changes including copy number aberrations (CNAs) are a major feature of multiple myeloma (MM), however their evolution in context of modern biological therapy is not well characterized. To investigate acquisition of CNAs and their prognostic relevance in context of first-line therapy, we profiled tumor diagnosis-relapse pairs from 178 NCRI Myeloma XI (ISRCTN49407852) trial patients using digital multiplex ligation-dependent probe amplification. CNA profiles acquired at relapse differed substantially between MM subtypes: hyperdiploid (HRD) tumors evolved predominantly in branching pattern vs. linear pattern in t(4;14) vs. stable pattern in t(11;14). CNA acquisition also differed between subtypes based on CCND expression, with a marked enrichment of acquired del(17p) in CCND2 over CCND1 tumors. Acquired CNAs were not influenced by high-dose melphalan or lenalidomide maintenance randomization. A branching evolution pattern was significantly associated with inferior overall survival (OS; hazard ratio (HR) 2.61, P = 0.0048). As an individual lesion, acquisition of gain(1q) at relapse was associated with shorter OS, independent of other risk markers or time of relapse (HR = 2.00; P = 0.021). There is an increasing need for rational therapy sequencing in MM. Our data supports the value of repeat molecular profiling to characterize disease evolution and inform management of MM relapse.


Subject(s)
DNA Copy Number Variations/genetics , Multiple Myeloma/genetics , Cyclin D1/genetics , DNA Copy Number Variations/drug effects , Humans , Lenalidomide/pharmacology , Melphalan/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Nerve Tissue Proteins/genetics , Prognosis , Recurrence
3.
Blood Cancer J ; 10(10): 101, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057009

ABSTRACT

Most patients with multiple myeloma (MM) die from progressive disease after relapse. To advance our understanding of MM evolution mechanisms, we performed whole-genome sequencing of 80 IGH-translocated tumour-normal newly diagnosed pairs and 24 matched relapsed tumours from the Myeloma XI trial. We identify multiple events as potentially important for survival and therapy-resistance at relapse including driver point mutations (e.g., TET2), translocations (MAP3K14), lengthened telomeres, and increased genomic instability (e.g., 17p deletions). Despite heterogeneous mutational processes contributing to relapsed mutations across MM subtypes, increased AID/APOBEC activity is particularly associated with shorter progression time to relapse, and contributes to higher mutational burden at relapse. In addition, we identify three enhanced major clonal evolution patterns of MM relapse, independent of treatment strategies and molecular karyotypes, questioning the viability of "evolutionary herding" approach in treating drug-resistant MM. Our data show that MM relapse is associated with acquisition of new mutations and clonal selection, and suggest APOBEC enzymes among potential targets for therapy-resistant MM.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Models, Genetic , Multiple Myeloma/genetics , Neoplasm Proteins/genetics , Point Mutation , Translocation, Genetic , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Recurrence
4.
J Mol Diagn ; 22(9): 1179-1188, 2020 09.
Article in English | MEDLINE | ID: mdl-32603764

ABSTRACT

Tumor cell lines are widely used for cancer research, but challenges regarding quality control of cell line identity, cross contamination, and tumor somatic molecular stability remain, demanding novel approaches beyond conventional short tandem repeat profiling. A total of 21 commonly used multiple myeloma cell lines obtained from public repositories were analyzed by digital multiplex ligation-dependent probe amplification (digitalMLPA) to characterize germline single-nucleotide polymorphisms, insertions/deletions, and somatic copy number aberrations (CNAs). Using generated profiles and an in-house developed analytical pipeline, blinded experiments were performed to determine capability of digitalMLPA to predict cell line identity and potential spike-in DNA contamination in 41 anonymized cell line samples. The dominant cell line was correctly identified in all cases, and cross contamination was correctly detected in 33 of 37 samples with spike-in DNA; there were no false-positive predictions. The four samples in which spike in was not detected all carried low levels of contamination (1%), whereas levels of contamination ≥5% were correctly identified in all cases. Unsupervised clustering of CNA profiles identified shared commonalities that correlated with initiating Ig heavy locus translocation events. Longitudinal CNA assessment of nine cell lines revealed changes under standard culturing conditions not detected by insertion/deletion profiling alone. Results suggest that digitalMLPA can be utilized as a high-throughput tool for advanced quality assurance for in vitro cancer research.


Subject(s)
Biomedical Research/standards , High-Throughput Nucleotide Sequencing/methods , Multiple Myeloma/genetics , Multiplex Polymerase Chain Reaction/methods , Cell Line, Tumor , DNA/genetics , DNA Contamination , DNA Copy Number Variations , Genetic Drift , Germ Cells , Humans , INDEL Mutation , Longitudinal Studies , Multiple Myeloma/pathology , Polymorphism, Single Nucleotide , Quality Control
6.
Haematologica ; 104(7): 1440-1450, 2019 07.
Article in English | MEDLINE | ID: mdl-30733268

ABSTRACT

The emergence of treatment resistant sub-clones is a key feature of relapse in multiple myeloma. Therapeutic attempts to extend remission and prevent relapse include maximizing response and the use of maintenance therapy. We used whole exome sequencing to study the genetics of paired samples taken at presentation and at relapse from 56 newly diagnosed patients, following induction therapy, randomized to receive either lenalidomide maintenance or observation as part of the Myeloma XI trial. Patients included were considered high risk, relapsing within 30 months of maintenance randomization. Patients achieving a complete response had predominantly branching evolutionary patterns leading to relapse, characterized by a greater mutational burden, an altered mutational profile, bi-allelic inactivation of tumor suppressor genes, and acquired structural aberrations. Conversely, in patients achieving a partial response, the evolutionary features were predominantly stable with a similar mutational and structural profile seen at both time points. There were no significant differences between patients relapsing after lenalidomide maintenance versus observation. This study shows that the depth of response is a key determinant of the evolutionary patterns seen at relapse. This trial is registered at clinicaltrials.gov identifier: 01554852.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Clonal Evolution , Multiple Myeloma/pathology , Mutation , Neoplasm Recurrence, Local/pathology , Aged , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lenalidomide/administration & dosage , Maintenance Chemotherapy , Male , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Remission Induction , Thalidomide/administration & dosage , Treatment Outcome , Exome Sequencing
7.
Blood ; 132(23): 2465-2469, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30373884

ABSTRACT

Multiple myeloma (MM) is a genetically heterogeneous cancer of bone marrow plasma cells with variable outcome. To assess the prognostic relevance of clonal heterogeneity of TP53 copy number, we profiled tumors from 1777 newly diagnosed Myeloma XI trial patients with multiplex ligation-dependent probe amplification (MLPA). Subclonal TP53 deletions were independently associated with shorter overall survival, with a hazard ratio of 1.8 (95% confidence interval, 1.2-2.8; P = .01). Clonal, but not subclonal, TP53 deletions were associated with clinical markers of advanced disease, specifically lower platelet counts (P < .001) and increased lactate dehydrogenase (P < .001), as well as a higher frequency of features indicative of genomic instability, del(13q) (P = .002) or del(1p) (P = .006). Biallelic TP53 loss-of-function by mutation and deletion was rare (2.4%) and associated with advanced disease. We present a framework for identifying subclonal TP53 deletions by MLPA, to improve patient stratification in MM and tailor therapy, enabling management strategies.


Subject(s)
Gene Deletion , Gene Dosage , Genomic Instability , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Tumor Suppressor Protein p53/genetics , Disease-Free Survival , Female , Humans , Male , Survival Rate
8.
Environ Health ; 17(1): 43, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720177

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) was the predominant leukemia in a recent study of Chornobyl cleanup workers from Ukraine exposed to radiation (UR-CLL). Radiation risks of CLL significantly increased with increasing bone marrow radiation doses. Current analysis aimed to clarify whether the increased risks were due to radiation or to genetic mutations in the Ukrainian population. METHODS: A detailed characterization of the genomic landscape was performed in a unique sample of 16 UR-CLL patients and age- and sex-matched unexposed general population Ukrainian-CLL (UN-CLL) and Western-CLL (W-CLL) patients (n = 28 and 100, respectively). RESULTS: Mutations in telomere-maintenance pathway genes POT1 and ATM were more frequent in UR-CLL compared to UN-CLL and W-CLL (both p < 0.05). No significant enrichment in copy-number abnormalities at del13q14, del11q, del17p or trisomy12 was identified in UR-CLL compared to other groups. Type of work performed in the Chornobyl zone, age at exposure and at diagnosis, calendar time, and Rai stage were significant predictors of total genetic lesions (all p < 0.05). Tumor telomere length was significantly longer in UR-CLL than in UN-CLL (p = 0.009) and was associated with the POT1 mutation and survival. CONCLUSIONS: No significant enrichment in copy-number abnormalities at CLL-associated genes was identified in UR-CLL compared to other groups. The novel associations between radiation exposure, telomere maintenance and CLL prognosis identified in this unique case series provide suggestive, though limited data and merit further investigation.


Subject(s)
Chernobyl Nuclear Accident , Genome, Human/radiation effects , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Neoplasms, Radiation-Induced/epidemiology , Occupational Exposure , Radiation Exposure , Adult , Case-Control Studies , Female , Follow-Up Studies , Genomics , Humans , Incidence , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Male , Middle Aged , Neoplasms, Radiation-Induced/etiology , Prevalence , Radiation Dosage , Ukraine/epidemiology , Young Adult
9.
Sci Rep ; 7(1): 7645, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28794481

ABSTRACT

Single nucleotide variants (SNVs) identified in cancer genomes can be de-convolved using non-negative matrix factorization (NMF) into discrete trinucleotide-based mutational signatures indicative of specific cancer-causing processes. The stability of NMF-generated mutational signatures depends upon the numbers of variants available for analysis. In this work, we sought to assess whether data from well-controlled mouse models can compensate for scarce human data for some cancer types. High quality sequencing data from radiotherapy-induced cancers is particularly scarce and the mutational processes defining ionizing radiation (IR)-induced mutagenesis in vivo are poorly defined. Here, we combine sequencing data from mouse models of IR-induced malignancies and human IR-induced malignancies. To determine whether the signatures identified from IR-exposed subjects can be differentiated from other mutagenic signatures, we included data from an ultraviolet radiation (UV)-induced human skin cancer and from a mouse model of urethane-induced cancers. NMF distinguished all three mutagens and in the pooled analysis IR was associated with mutational signatures common to both species. These findings illustrate the utility of pooled analysis of mouse and human sequencing data.


Subject(s)
Disease Susceptibility , Mutation , Neoplasms/etiology , Radiation, Ionizing , Alleles , Animals , DNA Mutational Analysis , Humans , Mice , Mutation/radiation effects , Neoplasms/pathology , Neoplasms, Radiation-Induced/genetics , Exome Sequencing
10.
Clin Cancer Res ; 23(7): 1852-1861, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27683180

ABSTRACT

Purpose: Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants, we analyzed germline and SMN samples from pediatric cancer survivors.Experimental Design: We performed whole-exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in 37 pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without any history of a familial cancer predisposition syndrome but known to have developed SMNs.Results: WES revealed TP53 mutations involving p53's DNA-binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53-mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53-coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in 6 patients and a synonymous SNP A639G in 4 others, resulting in 10 of 37 evaluable patients (27%) harboring a germline TP53 variant.Conclusions: Currently, germline TP53 is not routinely assessed in patients with pediatric cancer. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive posttreatment monitoring. Clin Cancer Res; 23(7); 1852-61. ©2016 AACR.


Subject(s)
Neoplasms, Second Primary/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Cancer Survivors , Child , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Loss of Heterozygosity , Male , Neoplasms/pathology , Neoplasms, Second Primary/pathology , Pediatrics , Polymorphism, Single Nucleotide , Exome Sequencing
11.
Fam Cancer ; 15(4): 593-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27356891

ABSTRACT

Although family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data. We implemented American College of Medical Genetics and Genomics standards and guidelines for assigning pathogenicity to variants. Globally across all 114 cancer susceptibility genes no statistically significant enrichment of likely pathogenic variants was shown (6.7 % cases 57/847, 5.3 % controls 85/1609; P = 0.15). Moreover there was no significant enrichment of mutations in genes such as TP53 or BRCA2 which have been proposed for clinical testing in CRC. In conclusion, while we identified genes that may be considered interesting candidates as determinants of CRC risk warranting further research, there is currently scant evidence to support a role for genes other than those responsible for established CRC syndromes in the clinical management of familial CRC.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Case-Control Studies , Colorectal Neoplasms/etiology , Heterozygote , Humans , Mutation , Proto-Oncogene Proteins/genetics , RecQ Helicases/genetics , Tumor Suppressor Proteins/genetics
12.
Nat Commun ; 7: 11883, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329137

ABSTRACT

Colorectal cancer (CRC) displays a complex pattern of inheritance. It is postulated that much of the missing heritability of CRC is enshrined in high-impact rare alleles, which are mechanistically and clinically important. In this study, we assay the impact of rare germline mutations on CRC, analysing high-coverage exome sequencing data on 1,006 early-onset familial CRC cases and 1,609 healthy controls, with additional sequencing and array data on up to 5,552 cases and 6,792 controls. We identify highly penetrant rare mutations in 16% of familial CRC. Although the majority of these reside in known genes, we identify POT1, POLE2 and MRE11 as candidate CRC genes. We did not identify any coding low-frequency alleles (1-5%) with moderate effect. Our study clarifies the genetic architecture of CRC and probably discounts the existence of further major high-penetrance susceptibility genes, which individually account for >1% of the familial risk. Our results inform future study design and provide a resource for contextualizing the impact of new CRC genes.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Adult , Age Factors , Age of Onset , Alleles , Case-Control Studies , Exome , Female , Genetic Variation , Humans , Male , Middle Aged , Pedigree , Phenotype , Risk Factors , United Kingdom
13.
Cell Rep ; 12(11): 1915-26, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26344771

ABSTRACT

Ionizing radiation (IR) is a mutagen that promotes tumorigenesis in multiple exposure contexts. One severe consequence of IR is the development of second malignant neoplasms (SMNs), a radiotherapy-associated complication in survivors of cancers, particularly pediatric cancers. SMN genomes are poorly characterized, and the influence of genetic background on genotoxin-induced mutations has not been examined. Using our mouse models of SMNs, we performed whole exome sequencing of neoplasms induced by fractionated IR in wild-type and Nf1 mutant mice. Using non-negative matrix factorization, we identified mutational signatures that did not segregate by genetic background or histology. Copy-number analysis revealed recurrent chromosomal alterations and differences in copy number that were background dependent. Pathway analysis identified enrichment of non-synonymous variants in genes responsible for cell assembly and organization, cell morphology, and cell function and maintenance. In this model system, ionizing radiation and Nf1 heterozygosity each exerted distinct influences on the mutational landscape.


Subject(s)
Neoplasms, Radiation-Induced/genetics , Animals , Carcinogenesis/genetics , DNA Mutational Analysis/methods , Disease Models, Animal , Gene Dosage , Genes, Neurofibromatosis 1 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Radiation, Ionizing
14.
J Clin Oncol ; 33(5): 426-32, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25559809

ABSTRACT

PURPOSE: Knowledge of the contribution of high-penetrance susceptibility to familial colorectal cancer (CRC) is relevant to the counseling, treatment, and surveillance of CRC patients and families. PATIENTS AND METHODS: To quantify the impact of germline mutation to familial CRC, we sequenced the mismatch repair genes (MMR) APC, MUTYH, and SMAD4/BMPR1A in 626 early-onset familial CRC cases ascertained through a population-based United Kingdom national registry. In addition, we evaluated the contribution of mutations in the exonuclease domain (exodom) of POLE and POLD1 genes that have recently been reported to confer CRC risk. RESULTS: Overall mutations (pathogenic, likely pathogenic) in MMR genes make the highest contribution to familial CRC (10.9%). Mutations in the other established CRC genes account for 3.3% of cases. POLE/POLD1 exodom mutations were identified in three patients with family histories consistent with dominant transmission of CRC. Collectively, mutations in the known genes account for 14.2% of familial CRC (89 of 626 cases; 95% CI = 11.5, 17.2). CONCLUSION: A genetic diagnosis is feasible in a high proportion of familial CRC. Mainstreaming such analysis in clinical practice should enable the medical management of patients and their families to be optimized. Findings suggest CRC screening of POLE and POLD1 mutation carriers should be comparable to that afforded to those at risk of HNPCC. Although the risk of CRC associated with unexplained familial CRC is in general moderate, in some families the risk is substantive and likely to be the consequence of unidentified genes, as exemplified by POLE and POLD1. Our findings have utility in the design of genetic analyses to identify such novel CRC risk genes.


Subject(s)
Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA Mismatch Repair , Exome , Genetic Testing/methods , Germ-Line Mutation , Adenomatous Polyposis Coli Protein/genetics , Adult , Aged , Bone Morphogenetic Protein Receptors, Type I/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Glycosylases/genetics , DNA Mismatch Repair/genetics , DNA Polymerase II/genetics , DNA Polymerase III/genetics , Feasibility Studies , Female , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , Pedigree , Poly-ADP-Ribose Binding Proteins , Predictive Value of Tests , Registries , Risk Assessment , Risk Factors , Sequence Analysis, DNA , Smad4 Protein/genetics , United Kingdom/epidemiology
15.
Blood ; 122(19): 3298-307, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-23996088

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the major pediatric cancer diagnosed in economically developed countries with B-cell precursor (BCP)-ALL, accounting for approximately 70% of ALL. Recent genome-wide association studies (GWAS) have provided the first unambiguous evidence for common inherited susceptibility to BCP-ALL, identifying susceptibility loci at 7p12.2, 9p21.3, 10q21.2, and 14q11.2. To identify additional BCP-ALL susceptibility loci, we conducted a GWAS and performed a meta-analysis with a published GWAS totaling 1658 cases and 4723 controls, with validation in 1449 cases and 1488 controls. Combined analysis identified novel loci mapping to 10p12.2 (rs10828317, odds ratio [OR] = 1.23; P = 2.30 × 10(-9)) and 10p14 marked by rs3824662 (OR = 1.31; P = 8.62 × 10(-12)). The single nucleotide polymorphism rs10828317 is responsible for the N215S polymorphism in exon 7 of PIP4K2A, and rs3824662 localizes to intron 3 of the transcription factor and putative tumor suppressor gene GATA3. The rs10828317 association was shown to be specifically associated with hyperdiploid ALL, whereas the rs3824662-associated risk was confined to nonhyperdiploid non-TEL-AML1 + ALL. The risk allele of rs3824662 was correlated with older age at diagnosis (P < .001) and significantly worse event-free survivorship (P < .0001). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to BCP-ALL and the influence of constitutional genotype on disease development.


Subject(s)
Chromosomes, Human, Pair 10 , GATA3 Transcription Factor/genetics , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/genetics , Polymorphism, Single Nucleotide , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Age Factors , Alleles , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Child , Exons , Female , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Introns , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Survival Analysis
16.
Genes Chromosomes Cancer ; 52(10): 954-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23893660

ABSTRACT

Over 90% of infants (< 1-year-old) diagnosed with leukemia have pro-B acute lymphoblastic leukemia (ALL) containing the MLL-AF4 fusion. When compared with other forms of paediatric ALL affecting later B-cell differentiation, MLL-AF4 pro-B is associated with a dismal prognosis with a typical 5-year disease-free survival of <20%. MLL-AF4 may be sufficient on its own for leukemogenesis or the gene-fusion product may alternatively predispose transformed cells to global genetic instability, enhancing the acquisition of additional key mutations. To gain insight into the genomic landscape of infant MLL-AF4 pro-B ALL we performed whole genome sequencing of diagnostic leukemic blasts and matched germline samples from three MLL-AF4 pro-B ALL infants. Our analysis revealed few somatic changes (copy number abnormalities, loss of heterozygosity, or single nucleotide variants), demonstrating that only a very small number of mutations are necessary to generate infant MLL-leukemia.


Subject(s)
Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Genome, Human , Genomics , Humans , INDEL Mutation/genetics , Infant , Infant, Newborn , Loss of Heterozygosity , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Translocation, Genetic
17.
BMC Biol ; 11: 66, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23800051

ABSTRACT

BACKGROUND: Diversity in penile morphology is characterised by extraordinary variation in the size and shape of the baculum (penis bone) found in many mammals. Although functionally enigmatic, diversity in baculum form is hypothesised to result from sexual selection. According to this hypothesis, the baculum should influence the outcome of reproductive competition among males within promiscuous mating systems. However, a test of this key prediction is currently lacking. RESULTS: Here we show that baculum size explains significant variation in the reproductive success of male house mice under competitive conditions. After controlling for body size and other reproductive traits, the width (but not length) of the house mouse baculum predicts both the mean number of offspring sired per litter and total number of offspring sired. CONCLUSIONS: By providing the first evidence linking baculum morphology to male reproductive success, our results support the hypothesis that evolutionary diversity in baculum form is driven by sexual selection.


Subject(s)
Mating Preference, Animal/physiology , Penis/anatomy & histology , Reproduction/physiology , Animals , Female , Male , Mice , Organ Size , Quantitative Trait, Heritable
18.
Proc Natl Acad Sci U S A ; 110(18): 7429-33, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23569245

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the major pediatric cancer. At diagnosis, the developmental timing of mutations contributing critically to clonal diversification and selection can be buried in the leukemia's covert natural history. Concordance of ALL in monozygotic, monochorionic twins is a consequence of intraplacental spread of an initiated preleukemic clone. Studying monozygotic twins with ALL provides a unique means of uncovering the timeline of mutations contributing to clonal evolution, pre- and postnatally. We sequenced the whole genomes of leukemic cells from two twin pairs with ALL to comprehensively characterize acquired somatic mutations in ALL, elucidating the developmental timing of all genetic lesions. Shared, prenatal, coding-region single-nucleotide variants were limited to the putative initiating lesions. All other nonsynonymous single-nucleotide variants were distinct between tumors and, therefore, secondary and postnatal. These changes occurred in a background of noncoding mutational changes that were almost entirely discordant in twin pairs and likely passenger mutations acquired during leukemic cell proliferation.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Mutation/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , Child, Preschool , Humans , Time Factors
19.
Nat Genet ; 45(2): 136-44, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23263490

ABSTRACT

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , DNA Polymerase III/genetics , DNA Polymerase II/genetics , DNA Replication/genetics , Models, Molecular , Exodeoxyribonucleases/genetics , Genetic Linkage , Genome-Wide Association Study , Germ-Line Mutation/genetics , Humans , Microsatellite Repeats/genetics , Pedigree , Poly-ADP-Ribose Binding Proteins , Schizosaccharomyces/genetics , Sequence Analysis, DNA
20.
Leuk Res ; 35(11): 1534-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21889209

ABSTRACT

Recent studies have shown that SNPs mapping to 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B), and 14q11.2 (CEBPE) and carrier status for recessively inherited Nijmegen Breakage syndrome (NBS) influence childhood acute lymphoblastic leukemia (ALL) risk. To examine these relationship, we analysed 398 ALL cases and 731 controls from Poland. Statistically significant association between genotype at 7p12.2 (IKZF1), 10q21.2 (ARID5B) and the NBS associated locus, 8q21.3 (NBN) and ALL risk was found; odds ratios (ORs), 1.34 (P=0.002), 1.33 (P=0.003), and 1325.21 (P=0.0028), respectively. These data provide further insights into the biological basis of ALL highlighting the existence of both common and rare disease susceptibility variants.


Subject(s)
Antigens, Neoplasm/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Ikaros Transcription Factor/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, Pair 9/genetics , DNA/genetics , DNA Mutational Analysis , Female , Genotype , Humans , Infant , Male , Poland , Polymerase Chain Reaction , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL