Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Brain ; 145(5): 1624-1631, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35148383

ABSTRACT

The recent description of biallelic DNAJC30 variants in Leber hereditary optic neuropathy (LHON) and Leigh syndrome challenged the longstanding assumption for LHON to be exclusively maternally inherited and broadened the genetic spectrum of Leigh syndrome, the most frequent paediatric mitochondrial disease. Herein, we characterize 28 so far unreported individuals from 26 families carrying a homozygous DNAJC30 p.Tyr51Cys founder variant, 24 manifesting with LHON, two manifesting with Leigh syndrome, and two remaining asymptomatic. This collection of unreported variant carriers confirms sex-dependent incomplete penetrance of the homozygous variant given a significant male predominance of disease and the report of asymptomatic homozygous variant carriers. The autosomal recessive LHON patients demonstrate an earlier age of disease onset and a higher rate of idebenone-treated and spontaneous recovery of vision in comparison to reported figures for maternally inherited disease. Moreover, the report of two additional patients with childhood- or adult-onset Leigh syndrome further evidences the association of DNAJC30 with Leigh syndrome, previously only reported in a single childhood-onset case.


Subject(s)
Leigh Disease , Optic Atrophy, Hereditary, Leber , Adult , Child , DNA, Mitochondrial/genetics , Female , Humans , Leigh Disease/genetics , Male , Mutation/genetics , Optic Atrophies, Hereditary , Optic Atrophy, Hereditary, Leber/genetics
2.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33465056

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.


Subject(s)
Electron Transport Complex I/metabolism , HSP40 Heat-Shock Proteins/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Adolescent , Adult , Cell Line , Child, Preschool , Electron Transport Complex I/chemistry , Female , Gene Knockout Techniques , Genes, Recessive , HSP40 Heat-Shock Proteins/deficiency , HSP40 Heat-Shock Proteins/metabolism , Homozygote , Humans , Male , Middle Aged , Pedigree , Penetrance , Phenotype , Protein Subunits , Reactive Oxygen Species/metabolism , Young Adult
3.
Mitochondrion ; 50: 139-144, 2020 01.
Article in English | MEDLINE | ID: mdl-31669237

ABSTRACT

In this article we present clinical, molecular and biochemical investigations of three patients with LHON caused by rare point substitutions in mtDNA. One patient harbours the known mtDNA mutation (m.13513 G>A), the others have new variants (m.13379 A>G in MT-ND5 gene and m.14597 A>G in MT-ND6 gene, which has never been previously associated with LHON). NGS analysis of a whole mtDNA derived from patient's blood revealed a low mutation load (24%, 47%, 23% respectively). Our data, including family segregation analysis, measurement of reactive oxygen species (ROS) production and cytotoxic effect of paraquat and high-resolution respirometry, showed that nucleotide variant m.14597 A>G can be classified as pathogenic mutation.


Subject(s)
DNA, Mitochondrial/genetics , Heteroplasmy , Optic Atrophy, Hereditary, Leber/genetics , Point Mutation , Adult , Cells, Cultured , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Herbicides/pharmacology , Humans , Membrane Potential, Mitochondrial/physiology , Paraquat/pharmacology , Young Adult
4.
J Inherit Metab Dis ; 42(5): 918-933, 2019 09.
Article in English | MEDLINE | ID: mdl-31260105

ABSTRACT

Recently, the plasma cytokines FGF-21 and GDF-15 were described as cellular metabolic regulators. They share an endocrine function and are highly expressed in the liver under stress and during starvation. Several studies found that these markers have high sensitivity and specificity for the diagnosis of mitochondrial diseases, especially those with prominent muscular involvement. In our study, we aimed to determine whether these markers could help distinguish mitochondrial diseases from other groups of inherited diseases. We measured plasma FGF-21 and GDF-15 concentrations in 122 patients with genetically confirmed primary mitochondrial disease and 127 patients with non-mitochondrial inherited diseases. Although GDF-15 showed better analytical characteristics (sensitivity = 0.66, specificity = 0.64, area under the curve [AUC] = 0.88) compared to FGF-21 (sensitivity = 0.51, specificity = 0.76, AUC = 0.78) in the pediatric group of mitochondrial diseases, both markers were also elevated in a variety of non-mitochondrial diseases, especially those with liver involvement (Gaucher disease, galactosemia, glycogenosis types 1a, 1b, 9), organic acidurias and some leukodystrophies. Thus, the overall positive and negative predictive values were not acceptable for these measurements to be used as diagnostic tests for mitochondrial diseases (FGF-21 positive predictive value [PPV] = 34%, negative predictive value [NPV] = 73%; GDF-15 PPV = 47%, NPV = 28%). We suggest that FGF-21 and GDF-15 increase in patients with metabolic diseases with metabolic or oxidative stress and inflammation.


Subject(s)
Fibroblast Growth Factors/blood , Growth Differentiation Factor 15/blood , Metabolic Diseases/blood , Metabolic Diseases/diagnosis , Adolescent , Adult , Biomarkers/blood , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Mitochondrial Diseases/blood , Mitochondrial Diseases/diagnosis , Predictive Value of Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...