Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0298080, 2024.
Article in English | MEDLINE | ID: mdl-38635657

ABSTRACT

Inclusions containing TAR DNA binding protein 43 (TDP-43) are a pathological hallmark of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). One of the disease-specific features of TDP-43 inclusions is the aberrant phosphorylation of TDP-43 at serines 409/410 (pS409/410). Here, we developed rabbit monoclonal antibodies (mAbs) that specifically detect pS409/410-TDP-43 in multiple model systems and FTD/ALS patient samples. Specifically, we identified three mAbs (26H10, 2E9 and 23A1) from spleen B cell clones that exhibit high specificity and sensitivity to pS409/410-TDP-43 peptides in an ELISA assay. Biochemical analyses revealed that pS409/410 of recombinant TDP-43 and of exogenous 25 kDa TDP-43 C-terminal fragments in cultured HEK293T cells are detected by all three mAbs. Moreover, the mAbs detect pS409/410-positive TDP-43 inclusions in the brains of FTD/ALS patients and mouse models of TDP-43 proteinopathy by immunohistochemistry. Our findings indicate that these mAbs are a valuable resource for investigating TDP-43 pathology both in vitro and in vivo.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Mice , Animals , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/pathology , Antibodies, Monoclonal , HEK293 Cells , DNA-Binding Proteins/genetics
2.
Mol Neurodegener ; 19(1): 9, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267984

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers , Motor Neurons
3.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014069

ABSTRACT

A nucleotide repeat expansion (NRE) in the first annotated intron of the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While C9 NRE-containing RNAs can be translated into several toxic dipeptide repeat proteins, how an intronic NRE can assess the translation machinery in the cytoplasm remains unclear. By capturing and sequencing NRE-containing RNAs from patient-derived cells, we found that C9 NRE was exonized by the usage of downstream 5' splice sites and exported from the nucleus in a variety of spliced mRNA isoforms. C9ORF72 aberrant splicing was substantially elevated in both C9 NRE+ motor neurons and human brain tissues. Furthermore, NREs above the pathological threshold were sufficient to activate cryptic splice sites in reporter mRNAs. In summary, our results revealed a crucial and potentially widespread role of repeat-induced aberrant splicing in the biogenesis, localization, and translation of NRE-containing RNAs.

4.
Acta Neuropathol Commun ; 11(1): 112, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37434215

ABSTRACT

Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1ß, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.


Subject(s)
Antibodies, Monoclonal , Intermediate Filaments , Animals , Mice , Epitopes , Immunization , NF-kappa B
5.
Sci Transl Med ; 14(662): eabq3215, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36103513

ABSTRACT

Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.


Subject(s)
Frontotemporal Dementia , Arginine , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Poly Adenosine Diphosphate Ribose
6.
Nat Neurosci ; 25(1): 26-38, 2022 01.
Article in English | MEDLINE | ID: mdl-34916658

ABSTRACT

Triggering receptor expressed on myeloid cell 2 (TREM2) is linked to risk of neurodegenerative disease. However, the function of TREM2 in neurodegeneration is still not fully understood. Here, we investigated the role of microglial TREM2 in TAR DNA-binding protein 43 (TDP-43)-related neurodegeneration using virus-mediated and transgenic mouse models. We found that TREM2 deficiency impaired phagocytic clearance of pathological TDP-43 by microglia and enhanced neuronal damage and motor impairments. Mass cytometry analysis revealed that human TDP-43 (hTDP-43) induced a TREM2-dependent subpopulation of microglia with high CD11c expression and phagocytic ability. Using mass spectrometry (MS) and surface plasmon resonance (SPR) analysis, we further demonstrated an interaction between TDP-43 and TREM2 in vitro and in vivo as well as in human tissues from individuals with amyotrophic lateral sclerosis (ALS). We computationally identified regions within hTDP-43 that interact with TREM2. Our data highlight that TDP-43 is a possible ligand for microglial TREM2 and that this interaction mediates neuroprotection of microglia in TDP-43-related neurodegeneration.


Subject(s)
DNA-Binding Proteins , Membrane Glycoproteins , Microglia , Neurodegenerative Diseases , Receptors, Immunologic , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotection , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
7.
J Biol Chem ; 294(49): 18624-18638, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31649034

ABSTRACT

Repeat-associated non-AUG (RAN) translation is a noncanonical translation initiation event that occurs at nucleotide-repeat expansion mutations that are associated with several neurodegenerative diseases, including fragile X-associated tremor ataxia syndrome (FXTAS), ALS, and frontotemporal dementia (FTD). Translation of expanded repeats produces toxic proteins that accumulate in human brains and contribute to disease pathogenesis. Consequently, RAN translation constitutes a potentially important therapeutic target for managing multiple neurodegenerative disorders. Here, we adapted a previously developed RAN translation assay to a high-throughput format to screen 3,253 bioactive compounds for inhibition of RAN translation of expanded CGG repeats associated with FXTAS. We identified five diverse small molecules that dose-dependently inhibited CGG RAN translation, while relatively sparing canonical translation. All five compounds also inhibited RAN translation of expanded GGGGCC repeats associated with ALS and FTD. Using CD and native gel analyses, we found evidence that three of these compounds, BIX01294, CP-31398, and propidium iodide, bind directly to the repeat RNAs. These findings provide proof-of-principle supporting the development of selective small-molecule RAN translation inhibitors that act across multiple disease-causing repeats.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Ataxia/genetics , Fragile X Syndrome/genetics , Tremor/genetics , Trinucleotide Repeat Expansion/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Ataxia/drug therapy , Azepines/pharmacology , Azepines/therapeutic use , Cells, Cultured , Circular Dichroism , DNA Repeat Expansion/drug effects , DNA Repeat Expansion/genetics , Drug Evaluation, Preclinical , Fragile X Syndrome/drug therapy , HEK293 Cells , Humans , Neurodegenerative Diseases/genetics , Propidium/pharmacology , Propidium/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Quinazolines/pharmacology , Quinazolines/therapeutic use , Rats , Tremor/drug therapy , Trinucleotide Repeat Expansion/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL