Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856017

ABSTRACT

The structure of oxide-supported metal nanoclusters plays an essential role in their sharply enhanced catalytic activity over that of bulk metals. Simulations provide the atomic-scale resolution needed to understand these systems. However, the sensitive mix of metal-metal and metal-support interactions, which govern their structure, puts stringent requirements on the method used, requiring calculations beyond standard density functional theory (DFT). The method of choice is coupled cluster theory [specifically CCSD(T)], but its computational cost has so far prevented its application to these systems. In this work, we showcase two approaches to make CCSD(T) accuracy readily achievable in oxide-supported nanoclusters. First, we leverage the SKZCAM protocol to provide the first benchmarks of oxide-supported nanoclusters, revealing that it is specifically metal-metal interactions that are challenging to capture with DFT. Second, we propose a CCSD(T) correction (ΔCC) to the metal-metal interaction errors in DFT, reaching accuracy comparable to that of the SKZCAM protocol at significantly lower cost. This approach forges a path toward studying larger systems at reliable accuracy, which we highlight by identifying a ground-state structure in agreement with experiments for Au20 on MgO, a challenging system where DFT models have yielded conflicting predictions.

2.
J Phys Chem Lett ; 15(23): 6081-6091, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38820256

ABSTRACT

The extent of ion pairing in solution is an important phenomenon to rationalize transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between solvated ions. The relative stabilities of the paired and solvent shared states in the PMF and the barrier between them are highly sensitive to the underlying potential energy surface. However, direct application of accurate electronic structure methods is challenging, since long simulations are required. We develop wave function based machine learning potentials with the random phase approximation (RPA) and second order Møller-Plesset (MP2) perturbation theory for the prototypical system of Na and Cl ions in water. We show both methods in agreement, predicting the paired and solvent shared states to have similar energies (within 0.2 kcal/mol). We also provide the same benchmarks for different DFT functionals as well as insight into the PMF based on simple analyses of the interactions in the system.

3.
J Am Chem Soc ; 145(46): 25372-25381, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948071

ABSTRACT

The adsorption energy of a molecule onto the surface of a material underpins a wide array of applications, spanning heterogeneous catalysis, gas storage, and many more. It is the key quantity where experimental measurements and theoretical calculations meet, with agreement being necessary for reliable predictions of chemical reaction rates and mechanisms. The prototypical molecule-surface system is CO adsorbed on MgO, but despite intense scrutiny from theory and experiment, there is still no consensus on its adsorption energy. In particular, the large cost of accurate many-body methods makes reaching converged theoretical estimates difficult, generating a wide range of values. In this work, we address this challenge, leveraging the latest advances in diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] to obtain accurate predictions for CO on MgO. These reliable theoretical estimates allow us to evaluate the inconsistencies in published temperature-programed desorption experiments, revealing that they arise from variations in employed pre-exponential factors. Utilizing this insight, we derive new experimental estimates of the (electronic) adsorption energy with a (more) precise pre-exponential factor. As a culmination of all of this effort, we are able to reach a consensus between multiple theoretical calculations and multiple experiments for the first time. In addition, we show that our recently developed cluster-based CCSD(T) approach provides a low-cost route toward achieving accurate adsorption energies. This sets the stage for affordable and reliable theoretical predictions of chemical reactions on surfaces to guide the realization of new catalysts and gas storage materials.

4.
J Chem Phys ; 156(12): 124704, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35364886

ABSTRACT

The O vacancy (Ov) formation energy, EOv, is an important property of a metal-oxide, governing its performance in applications such as fuel cells or heterogeneous catalysis. These defects are routinely studied with density functional theory (DFT). However, it is well-recognized that standard DFT formulations (e.g., the generalized gradient approximation) are insufficient for modeling the Ov, requiring higher levels of theory. The embedded cluster method offers a promising approach to compute EOv accurately, giving access to all electronic structure methods. Central to this approach is the construction of quantum(-mechanically treated) clusters placed within suitable embedding environments. Unfortunately, current approaches to constructing the quantum clusters either require large system sizes, preventing application of high-level methods, or require significant manual input, preventing investigations of multiple systems simultaneously. In this work, we present a systematic and general quantum cluster design protocol that can determine small converged quantum clusters for studying the Ov in metal-oxides with accurate methods, such as local coupled cluster with single, double, and perturbative triple excitations. We apply this protocol to study the Ov in the bulk and surface planes of rutile TiO2 and rock salt MgO, producing the first accurate and well-converged determinations of EOv with this method. These reference values are used to benchmark exchange-correlation functionals in DFT, and we find that all the studied functionals underestimate EOv, with the average error decreasing along the rungs of Jacob's ladder. This protocol is automatable for high-throughput calculations and can be generalized to study other point defects or adsorbates.

SELECTION OF CITATIONS
SEARCH DETAIL
...