Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell Discov ; 10(1): 28, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472169

ABSTRACT

Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).

2.
Eur J Med Res ; 28(1): 578, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071363

ABSTRACT

BACKGROUND: The causal associations between psychiatric disorders and falls risk remains uncertain. Consequently, this study aimed to explore the causal relationship between genetically determined three common psychiatric disorders and the risk of falls based on Mendelian randomization (MR). METHODS: The genome-wide association study (GWAS) data for schizophrenia (SCZ) (N = 320,404), major depressive disorder (MDD) (N = 480,359), and Alzheimer's disease (AD) (N = 63,926) were obtained as exposures. The GWAS data for falls risk (N = 451,179) was obtained as outcome. Univariate Mendelian randomization (UVMR) was used to evaluate the direct causal relationship between SCZ, MDD, AD, and risk of falls. Inverse variance weighting (IVW) was used as the primary analysis method. Sensitivity analysis was performed to assess the validity of the casualty. Multivariate Mendelian randomization (MVMR) analysis was conducted after adjusting body mass index and smoking initiation. Mediating MR was conducted to calculate the mediating effects of potential intermediaries. RESULTS: UVMR analysis showed that SCZ (OR 1.02, 95% CI 1.01-1.04, p = 8.03E-03) and MDD (OR 1.15, 95% CI 1.08-1.22, p = 1.38E-05) were positively associated with the risk of falls. Sensitivity analysis results were reliable and robust. MVMR results indicated that the relationship between MDD and SCZ and falls risk remained significant. Mediating MR results demonstrated that smoking initiation mediated partial causal effect of SCZ (0.65%, P = 0.03) and MDD (14.82%, P = 2.02E-03) on risk of falls. CONCLUSIONS: This study provides genetic evidence for a causal relationship of individuals with SCZ and MDD on an increased risk of falls. Healthcare providers should be aware of the risk of falls in MDD and SCZ patients and develop strategies accordingly.


Subject(s)
Depressive Disorder, Major , Mental Disorders , Humans , Depressive Disorder, Major/genetics , Accidental Falls , Genome-Wide Association Study , Mendelian Randomization Analysis
3.
Front Oncol ; 13: 1148735, 2023.
Article in English | MEDLINE | ID: mdl-37377920

ABSTRACT

Backgrounds: PD-1 inhibitors and TKIs have been used to treat advanced osteosarcoma, but there is still a lack of intuitive data for the comparison of their efficacy. We conducted a meta-analysis to evaluate their therapeutic benefits. Methods: A systematic methodological search of five primary electronic databases was performed. Studies with a randomized design of any type about PD-1 inhibitors or TKIs for the treatment of advanced osteosarcoma were included. The primary outcomes mainly included CBR, PFS, OS and ORR, The CR, PR, SD and AEs were the secondary outcomes. The survival period (months) of patients was taken as the main analysis data. Random-effects models were used for meta-analysis. Results: Eight immunocheckpoint inhibitors in 327 patients from 10 clinical trials were finally evaluated. For OS, TKIs [11.67 months (95% CI, 9.32-14.01)] show more obvious advantages than PD-1 inhibitors [6.37 months (95% CI, 3.96-8.78)]. For PFS, TKIs [4.79 months (95% CI, 3.33-6.24)] are longer than PD-1 inhibitors [1.46 months (95% CI, 1.23-1.69)]. Although there was no fatal event, attention should still be paid, especially during the combined application of PD-1 inhibitors with TKIs since their obvious AEs. Conclusions: The findings of this study suggest that patients with advanced osteosarcoma, TKIs may be more beneficial than PD-1 inhibitors. TKIs combined with PD-1 inhibitors has a bright future in the treatment of advanced osteosarcoma, but we should always pay attention to the strong side effects.

4.
Front Genet ; 14: 1112671, 2023.
Article in English | MEDLINE | ID: mdl-36824434

ABSTRACT

Lung adenocarcinoma (LUAD) is the main histological type of lung cancer with an unfavorable survival rate. Metastasis is the leading LUAD-related death with Epithelial-Mesenchymal Transition (EMT) playing an essential role. The anticancer efficacies of the active ingredients in Chonglou have been widely reported in various cancers. However, the potential therapeutic targets of the Chonglou active ingredients in LUAD patients remain unknown. Here, the network pharmacology and bioinformatics were performed to analyze the associations of the clinical characteristics, immune infiltration factors and m6A-related genes with the EMT-related genes associated with LUAD (EMT-LUAD related genes), and the molecular docking, STRING, GO, and KEGG enrichment for the drug targets of Chonglou active ingredients associated with EMT (EMT-LUAD-Chonglou related genes). And, cell viability analysis and cell invasion and infiltration analysis were used to confirm the theoretical basis of this study. A total of 166 EMT-LUAD related genes were identified and a multivariate Cox proportional hazards regression model with a favorable predictive accuracy was constructed. Meanwhile, the immune cell infiltration, immune cell subsets, checkpoint inhibitors and the expression of m6A-related genes were significantly associated with the risk scores for EMT-LUAD related genes with independent significant prognostic value of all included LUAD patients. Furthermore, 12 EMT-LUAD-Chonglou related genes with five core drug targets were identified, which participated in LUAD development through extracellular matrix disassembly, collagen metabolic process, collagen catabolic process, extracellular matrix organization, extracellular structure organization and inflammatory response. Moreover, we found that the active ingredients of Chonglou could indeed inhibit the progression of lung adenocarcinoma cells. These results are oriented towards EMT-related genes to achieve a better understanding of the role of Chonglou and its targets in osteosarcoma development and metastasis, thus guiding future preclinical studies and facilitating clinical translation of LUAD treatment.

5.
Front Endocrinol (Lausanne) ; 14: 1280429, 2023.
Article in English | MEDLINE | ID: mdl-38239978

ABSTRACT

Introduction: The correlation between the non-use of cooking oil fumes (COFs) extractors and bone mineral density (BMD) have not been clarified. Consequently, this study attempted to explore the impact of non-use COFs extractors on BMD in population aged 45 years and older based on a cross-sectional study. Methods: This study was a cross-sectional study within the framework of an ongoing prospective population-based cohort study in China. The multivariate linear regression models were used to evaluate the correlation between the non-use of fume extractors in family cooking and total lumbar spine (LS), femoral neck (FN), total hip BMD and levels of bone metabolism markers. Results: A total of 3433 participants were included in the final analyses, of which 2607 (75.93%) participants used fume extractors. The results of models indicated that there were significant correlations of the non-use of fume extractors on total LS BMD (ß = -0.024, 95% CI, -0.036, -0.012, p < 0.001), PINP (ß = 4.363, 95% CI, 2.371, 6.356, p < 0.001) and ALP (ß = 4.555, 95% CI, 2.593, 6.517, p < 0.001) levels. Conclusions: This study verified that the use of fume extractors is an efficacious measure to prevent LS bone loss. For the sake of public bone health, people should install a fume extractor in the kitchen and use it routinely when cooking.


Subject(s)
Bone Density , Cooking , Humans , Cross-Sectional Studies , Cohort Studies , Prospective Studies , China/epidemiology
6.
J Vis Exp ; (189)2022 11 04.
Article in English | MEDLINE | ID: mdl-36408984

ABSTRACT

As the most common male malignancy, prostate cancer (PC) ranks second in mortality, primarily due to a 65%-75% bone metastasis rate. Therefore, it is essential to understand the process and related mechanisms of prostate cancer bone metastasis for developing new therapeutics. For this, an animal model of bone metastasis is an essential tool. Here, we report detailed procedures to generate a bone metastasis mouse model via intra-cardiac injection of prostate cancer cells. A bioluminescence imaging system can determine whether prostate cancer cells have been accurately injected into the heart and monitor cancer cell metastasis since it has great advantages in monitoring metastatic lesion development. This model replicates the natural development of disseminated cancer cells to form micro-metastases in the bone and imitates the pathological process of prostate cancer bone metastasis. It provides an effective tool for further exploration of the molecular mechanisms and the in vivo therapeutic effects of this disease.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Humans , Mice , Male , Animals , Heterografts , Bone Neoplasms/secondary , Prostatic Neoplasms/pathology , Transplantation, Heterologous , Disease Models, Animal
7.
Sci Rep ; 10(1): 6105, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32269242

ABSTRACT

Myocardial remodeling represents a key factor in chronic heart failure (CHF) development, and is characterized by chronic death of cardiomyocytes. Cardiac function changes may be attributed to inflammation, apoptosis and autophagy. This study assessed the effects of Qi Dan Li Xin Pill (QD) on heart function, inflammatory factors, autophagy and apoptosis in cardiac remodeling in CHF rats upon myocardial infarction (MI) induction. Male SD rats underwent a sham procedure or left anterior descending coronary artery (LADCA) ligation, causing MI. Twenty-eight days after modeling, the animals were treated daily with QD, valsartan and saline for 4 weeks. Echocardiography after 4 weeks of drug intervention revealed substantially improved left ventricular remodeling and cardiac function following QD treatment. As demonstrated by decreased IL-1ß, IL-6 and TNF-α amounts, this treatment also inhibited the apoptotic process and protected the viability of the myocardium. These outcomes may be attributed to enhanced autophagy in cardiomyocytes, which further reduced pro-inflammatory and pro apoptotic effects. This process may be achieved by QD regulation of the mTOR/P70S6K signaling pathway, suggesting that the traditional Chinese medicine Qi Dan Li Xin pill is effective in heart protective treatment, and is worth further investigation.


Subject(s)
Apoptosis , Autophagy , Cardiotonic Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Heart Failure/drug therapy , Myocytes, Cardiac/metabolism , Animals , Cardiotonic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Interleukins/genetics , Interleukins/metabolism , Male , Myocytes, Cardiac/drug effects , Rats , Rats, Sprague-Dawley , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
J Cell Physiol ; 234(8): 12562-12568, 2019 08.
Article in English | MEDLINE | ID: mdl-30618070

ABSTRACT

Autophagy is the general term of lysosomal degradation of substances in cells, which is considered the key to maintaining the normal structure and function of the heart. It also has a correlation with several heart diseases, in particular, myocardial ischemia/reperfusion (I/R) injury. At the stage of myocardial ischemia, autophagy degrades nonfunctional cytoplasmic proteins providing the critical nutrients for the critical life activities, thereby suppressing cell apoptosis and necrosis. However, autophagy is likely to affect the heart negatively in the reperfusion stage. Mammalian target of rapamycin (mTOR) and Beclin1 are two vital autophagy-related molecules in myocardial I/R injury playing significant roles in different stages. In the ischemia stage, mTOR plays its roles through AMPK/mTOR and phosphoinositide 3-kinase/Akt/mTOR pathway, whereas Beclin1 plays its roles through its upregulation in the reperfusion stage. A possible interaction between mTOR and Beclin1 has been reported recently, and further studies need to be done to find the underlying interaction between the two molecules in myocardial I/R injury.


Subject(s)
Autophagy/physiology , Beclin-1/metabolism , Myocardial Ischemia/metabolism , Reperfusion Injury/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Beclin-1/genetics , Humans , TOR Serine-Threonine Kinases/genetics
9.
J Cell Physiol ; 234(5): 5488-5495, 2019 05.
Article in English | MEDLINE | ID: mdl-30485429

ABSTRACT

Class III histone deacetylases (HDACs) belong to the proteasome family, comprising seven family members identified in mammalian cells, identified Sirt1-Sirt7. As an important member of HDACs, Sirt3 is hotly debated for its multiple functions. It was reported that Sirt3 got involved in the alleviation of multiple diseases, including myocardial infarction, neuron ischemia, hypertrophy, and diabetic myopathy. Through regulating many cellular mechanisms, such as apoptosis, autophagy, and clearance of reactive oxygen species (ROS), Sirt3 played an important role in the alleviation of myocardial ischemia-reperfusion injury. Nowadays Sirt3-induced autophagy was indicated to be involved in the process of the development of myocardial ischemia-reperfusion injury. Sirt3 could both activate and inhibit autophagy process by activating different downstream signal pathways, such as Sirt3-AMP-activated protein kinase pathway, Sirt3-Foxo3a pathway, and Sirt3-superoxide dismutase-mitochondrial ROS pathway. Whereas the Sirt3-induced autophagy in different phases of myocardial ischemia-reperfusion has not been systematically illustrated. In this review, we summarized the regulated mechanisms found in these years and listed the updated research about the relationship between Sirt3 and autophagy which are both positive and negative during myocardial ischemia-reperfusion phase. We anticipated that we may controlled the activation of autophagy by regulating the concentration of Sirt3 in myocyte. By maintaining a proper expression of autophagy in different phases of myocardial ischemia-reperfusion, we could reduce the morbidity of patients with myocardial infarction apparently in the future.


Subject(s)
Autophagy , Myocardial Reperfusion Injury/enzymology , Myocardium/enzymology , Sirtuin 3/metabolism , Animals , Forkhead Transcription Factors/metabolism , Humans , Mitogen-Activated Protein Kinases/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL