Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(3)2023 02 26.
Article in English | MEDLINE | ID: mdl-36979375

ABSTRACT

Wheat is one of the most important food sources on Earth. MicroRNAs (miRNAs) play important roles in wheat productivity. To identify wheat miRNAs as well as their expression profiles under drought condition, we constructed and sequenced small RNA (sRNA) libraries from the leaves and roots of three wheat cultivars (Kukri, RAC875 and Excalibur) under water and drought conditions. A total of 636 known miRNAs and 294 novel miRNAs were identified, of which 34 miRNAs were tissue- or cultivar-specific. Among these, 314 were significantly regulated under drought conditions. miRNAs that were drought-regulated in all cultivars displayed notably higher expression than those that responded in a cultivar-specific manner. Cultivar-specific drought response miRNAs were mainly detected in roots and showed significantly different drought regulations between cultivars. By using wheat degradome library, 6619 target genes were identified. Many target genes were strongly enriched for protein domains, such as MEKHLA, that play roles in drought response. Targeting analysis showed that drought-downregulated miRNAs targeted more genes than drought-upregulated miRNAs. Furthermore, such genes had more important functions. Additionally, the genes targeted by drought-downregulated miRNAs had multiple interactions with each other, while the genes targeted by drought-upregulated miRNAs had no interactions. Our data provide valuable information on wheat miRNA expression profiles and potential functions in different tissues, cultivars and drought conditions.


Subject(s)
MicroRNAs , Water , Water/metabolism , Triticum/metabolism , Droughts , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Library , Gene Expression Regulation, Plant , Stress, Physiological/genetics
2.
Funct Integr Genomics ; 23(1): 15, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36562829

ABSTRACT

Wheat is one of the most important food sources on Earth. MicroRNAs (miRNA) play important roles in wheat productivity. To identify wheat miRNAs, we constructed and sequenced sRNA libraries from leaves and roots of two wheat cultivars (RAC875 and Kukri) with many different traits. Given that available miRNA wheat complement in the plant-specific database PmiREN ( https://pmiren.com ) does not include root tissues and root-associated miRNAs might thus be missing, we performed first the prediction of novel miRNAs using the sRNAbench tool. We found a total of 150 putatively novel miRNA genes with expression of both arms from 289 unique mature sequences and nearly 30% of all miRNA reads in roots corresponded to novel miRNAs. In contrast, this figure in leaves dropped to under 3%, confirming the undersampling of roots in the complement of known miRNAs. By using 120 publicly available wheat datasets, 598 Zea mays small RNA libraries, 64 plant species genomes, wheat degradome library, and functional enrichment analysis, a subset of novel miRNAs were confirmed as bona-fide miRNAs. Of the total 605 miRNAs identified in this study inclusive of 316 known miRNAs, 528 miRNAs were shared by both cultivars, 429 miRNAs were shared by both root tissues and 329 miRNAs were shared by both leaf tissues. In addition, 32 miRNAs were specific to Kukri while 45 miRNAs were specific to RAC875. These miRNAs had diverse functions, such as regulation of gene transcription, protein translation, energy metabolism, and cell cycle progression. Our data provide a genome-wide miRNA expression profile in these two wheat cultivars and help functional studies of wheat genomics.


Subject(s)
MicroRNAs , Triticum , Triticum/genetics , Triticum/metabolism , Genomics , Base Sequence , MicroRNAs/genetics , MicroRNAs/metabolism , Genome, Plant , Gene Expression Regulation, Plant , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Profiling
3.
Cell Biochem Funct ; 40(8): 888-902, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36121195

ABSTRACT

Two yeast forkhead transcription factors Fkh1 and Fkh2 regulate the transcription of CLB2 cluster genes important for mitosis. Both proteins contain a DNA-binding domain (DBD) and a forkhead-associated domain (FHAD), which are essential for ternary complex formation with transcription factor Mcm1, the transcription of CLB2 cluster genes and the physical interaction with Ndd1 and Clb2. Fkh2 also contains an additional C' domain that contains six consensus Cdk phosphorylation sites, but the function of this domain is dispensable. Here, we found new roles of the DBD, the FHAD, and the C' domain of Fkh1 and Fkh2 in cellular functions. The Fkh2 DBD determines the genetic interaction with NDD1, while both the FHAD and DBD of Fkh1 or Fkh2 determine cell morphology and stability of their own transcripts. Both HFADs, but not DBDs, also mediate physical interaction between Fkh1 and Fkh2. DBD and HFAD of Fkh1 and DBD, but not HFAD, of Fkh2 are also fundamental for nuclear localization. However, the Fkh2-specific C' domain has no role in these aspects except in the stability of some fkh mutant transcripts, which is either increased or decreased in the presence of this domain. These findings reveal that Fkh1 and Fkh2 have multiple cellular functions and function mainly via their DBD and FHAD through a domain-controlled feedback regulation mechanism.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Forkhead Transcription Factors/genetics , DNA/metabolism
4.
Biotechnol Bioeng ; 118(8): 3105-3116, 2021 08.
Article in English | MEDLINE | ID: mdl-34002369

ABSTRACT

Many microRNAs (miRNAs) have been predicted from small RNA sequencing data, but little was experimentally verified due to the lack of effective methods. Here, we developed a simple and reliable dual gene expression cassette vector-based method to verify predicted plant miRNAs. We cloned osa-miR528 as a known miRNA, hvu-miRX as a predicted miRNA and TaDREB3 open reading frame as a non-miRNA into the first gene expression cassette and fused their complementary or noncomplementary sequences as predicted target or nontarget sequences with the 3' untranslated region of green fluorescent protein (GFP) in the second one. When these constructs were bombarded into plant cells, only the construct containing both osa-miR528 or hvu-miRX and its complementary sequence did not generate green fluorescence. Stem-loop reverse-transcription polymerase chain reaction detected mature osa-miR528 or mature hvu-miRX in the cells, while northern analysis showed that GFP messenger RNA from the construct containing both osa-miR528 or hvu-miRX and its complementary sequence was degraded. Taken together, the results indicate that hvu-miRX is an authentic miRNA like osa-miR528, miRNA's complementary sequence is its target sequence, and both osa-miR528 and hvu-miRX silenced the GFP expression via a cleavage mode. Our method thus facilitates the verification of predicted plant miRNAs, target sequences, and function modes.


Subject(s)
Genetic Vectors , Hordeum/genetics , MicroRNAs/genetics , Nicotiana/genetics , RNA, Plant/genetics , Sequence Analysis, RNA , Reverse Transcriptase Polymerase Chain Reaction
5.
Plant J ; 95(1): 138-149, 2018 07.
Article in English | MEDLINE | ID: mdl-29681080

ABSTRACT

Drought is the most serious abiotic stress, and causes crop losses on a worldwide scale. The present study identified a previously unknown microRNA (designated as hvu-miRX) of 21 nucleotides (nt) in length in barley. Its precursor (designated pre-miRX) and primary transcript (designated pri-miRX) were also identified, with lengths of 73 and 559 nt, respectively. The identified upstream sequence of pri-miRX contained both the TATA box and the CAAT box, which are both required for initiation of transcription. Transient promoter activation assays showed that the core promoter region of pri-miRX ranged 500 nt from the transcription start site. In transgenic barley overexpression of the wheat DREB3 transcription factor (TaDREB3) caused hvu-miRX to be highly expressed as compared with the same miRNA in non-transgenic barley. However, the high expression was not directly associated with TaDREB3. Genomic analysis revealed that the hvu-miRX gene was a single copy located on the short arm of chromosome 2 and appeared to be only conserved in Triticeae, but not in other plant species. Notably, transgenic barley that overexpressed hvu-miRX showed drought tolerance. Degradome library analysis and other tests showed that hvu-miRX targeted various genes including transcription factors via the cleavage mode. Our data provides an excellent opportunity to develop drought stress tolerant cereals using hvu-miRX.


Subject(s)
Genes, Plant/physiology , Hordeum/physiology , MicroRNAs/physiology , Conserved Sequence/genetics , Dehydration , Genes, Plant/genetics , Genome, Plant/genetics , Hordeum/genetics , Hordeum/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , TATA Box/genetics
6.
BMC Genomics ; 17(1): 735, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27633252

ABSTRACT

BACKGROUND: Various small RNA (sRNA) sizes and varieties have been identified, but their relationship as well as relationship with their origins and allocations have not been well understood or investigated. RESULTS: By comparing sRNAs generated from two barley cultivars, Golden Promise (GP) and Pallas, we identified that the generation of different sizes and types of sRNAs in barley was locus-, chromosome- and/or cultivar-dependent. 20-nt sRNAs mainly comprising miRNAs and chloroplast-derived sRNAs were significantly over-expressed in Pallas vs. GP on chromosomes 3H and 6H. MiRNAs-enriched 21-nt sRNAs were significantly over-expressed in Pallas vs. GP only on chromosome 4H. On chromosome 5H this size of sRNAs was significantly under-expressed in Pallas, so were 22-nt sRNAs mainly comprising miRNAs and repeat-derived sRNAs. 24-nt sRNAs mostly derived from repeats were evenly distributed in all chromosomes and expressed similarly between GP and Pallas. Unlike other sizes of sRNAs, 24-nt sRNAs were little conserved in other plant species. Abundant sRNAs were mostly generated from 3' terminal regions of chromosome 1H and 5' terminal regions of chromosome 5H. Over-expressed miRNAs in GP vs. Pallas primarily function in stress responses and iron-binding. CONCLUSIONS: Our study indicates that 23-24-nt sRNAs may be linked to repressive chromatin modifications and function in genome stability while 20-21-nt sRNAs may be important for the cultivar specificity. This study provides a novel insight into the mechanism of sRNA expression and function in barley.


Subject(s)
Chromosomes, Plant , Genetic Loci , Hordeum/genetics , RNA, Plant/genetics , RNA, Small Untranslated/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Genomics/methods , MicroRNAs/genetics
7.
Biochem J ; 473(21): 3855-3869, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27555611

ABSTRACT

Forkhead transcription factors play a key role in embryonic patterning during development. In Saccharomyces cerevisiae, two forkhead transcription factors, Fkh1 and Fkh2, regulate the transcription of CLB2 cluster genes important for mitosis. Fkh1 reduces, whereas Fkh2 elevates, the transcription of CLB2 cluster genes. However, the mechanism for this observation remains unclear. Fkh1 and Fkh2 each contain a forkhead domain (DNA-binding domain, DBD) and a forkhead-associated domain (FHAD), whereas Fkh2 possesses an extra C' domain containing six consensus cyclin-dependent kinase phosphorylation sites. In the present study, roles of these domains in protein complexes, the regulation of cell growth and CLB2 cluster genes and protein interactions were investigated using various domain mutants. The result showed that the DBD was vital for ternary complex formation with Mcm1, whereas the FHAD was central for the regulation of cell growth and CLB2 cluster transcription and for interactions with Ndd1 and Clb2. However, the Fkh2 C' domain was dispensable for the above functions. Both DBDs and FHADs had functional divergences in the cell, and Ndd1 functioned via its phosphorylated form. These data provide important insights into the functional mechanism of Fkh1 and Fkh2 in cell cycle control.


Subject(s)
Cell Cycle Proteins/metabolism , Forkhead Transcription Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Blotting, Northern , Blotting, Western , Cell Cycle/genetics , Cell Cycle/physiology , Cell Cycle Proteins/genetics , Cyclin B/genetics , Cyclin B/metabolism , Forkhead Transcription Factors/genetics , Immunoprecipitation , Minichromosome Maintenance 1 Protein/genetics , Minichromosome Maintenance 1 Protein/metabolism , Plasmids , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Front Plant Sci ; 6: 281, 2015.
Article in English | MEDLINE | ID: mdl-25964791

ABSTRACT

Viral satellite RNAs (satRNAs) are small subviral RNAs and depend on the helper virus for replication and spread. satRNAs can attenuate helper virus-induced symptoms, the mechanism of which remains unclear. Here, we show that two virus-encoded suppressors of RNA silencing (VSRs), Cucumber mosaic virus (CMV) 2b and Tombusvirus P19, suppress hairpin RNA (hpRNA)-induced silencing of a ß-glucuronidase (GUS) gene in Nicotiana benthamiana. This suppression can be overcome by CMV Y-satellite RNA (Y-Sat) via the Y-Sat-derived small interfering RNAs (siRNAs), which bind to the VSRs and displace the bound hpGUS-derived siRNAs. We also show that microRNA target gene expression in N. tabacum was elevated by CMV infection, presumably due to function of the 2b VSR, but this upregulation of microRNA target genes was reversed in the presence of Y-Sat. These results suggest that satRNA infection minimizes the effect of VSRs on host siRNA and microRNA-directed silencing. Our results suggest that the high abundance of satRNA-derived siRNAs contributes to symptom attenuation by binding helper virus-encoded VSRs, minimizing the capacity of the VSRs to bind host siRNA and miRNA and interfere with their function.

9.
PLoS One ; 10(3): e0118503, 2015.
Article in English | MEDLINE | ID: mdl-25793505

ABSTRACT

For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs)would be stably expressed in different barley varieties and under different experimental treatments,in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAs)and mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection,boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT), alpha-Tubulin (α-TUB), Glycolytic glyceraldehyde-3-phosphate dehydrogenase(GAPDH), ADP-ribosylation factor 1-like protein (ADP), four snoRNAs; (U18,U61, snoR14 and snoR23) and two microRNAs (miR168, miR159) as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes form iRNA and mRNA qPCR data normalization under different stress treatments [corrected].


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Hordeum/genetics , Hordeum/physiology , MicroRNAs/genetics , Stress, Physiological/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Reproducibility of Results , Software
10.
Plant Biotechnol J ; 13(3): 293-305, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25583362

ABSTRACT

Drought is a normal and recurring climate feature in most parts of the world and plays a major role in limiting crop productivity. However, plants have their own defence systems to cope with adverse climatic conditions. One of these defence mechanisms is the reprogramming of gene expression by microRNAs (miRNAs). miRNAs are small noncoding RNAs of approximately 22 nucleotides length, which have emerged as important regulators of genes at post-transcriptional levels in a range of organisms. Some miRNAs are functionally conserved across plant species and are regulated by drought stress. These properties suggest that miRNA-based genetic modifications have the potential to enhance drought tolerance in cereal crops. This review summarizes the current understanding of the regulatory mechanisms of plant miRNAs, involvement of plant miRNAs in drought stress responses in barley (Hordeum vulgare L.), wheat (Triticum spp.) and other plant species, and the involvement of miRNAs in plant-adaptive mechanisms under drought stress. Potential strategies and directions for future miRNA research and the utilization of miRNAs in the improvement of cereal crops for drought tolerance are also discussed.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , MicroRNAs/genetics , Plants/genetics , Triticum/genetics , Droughts , RNA, Plant/genetics , Stress, Physiological
11.
Plant Biotechnol J ; 13(1): 2-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24975557

ABSTRACT

Drought is a major constraint to crop production, and microRNAs (miRNAs) play an important role in plant drought tolerance. Analysis of miRNAs and other classes of small RNAs (sRNAs) in barley grown under water and drought conditions reveals that drought selectively regulates expression of miRNAs and other classes of sRNAs. Low-expressed miRNAs and all repeat-associated siRNAs (rasiRNAs) tended towards down-regulation, while tRNA-derived sRNAs (tsRNAs) had the tendency to be up-regulated, under drought. Antisense sRNAs (putative siRNAs) did not have such a tendency under drought. In drought-tolerant transgenic barley overexpressing DREB transcription factor, most of the low-expressed miRNAs were also down-regulated. In contrast, tsRNAs, rasiRNAs and other classes of sRNAs were not consistently expressed between the drought-treated and transgenic plants. The differential expression of miRNAs and siRNAs was further confirmed by Northern hybridization and quantitative real-time PCR (qRT-PCR). Targets of the drought-regulated miRNAs and siRNAs were predicted, identified by degradome libraries and confirmed by qRT-PCR. Their functions are diverse, but most are involved in transcriptional regulation. Our data provide insight into the expression profiles of miRNAs and other sRNAs, and their relationship under drought, thereby helping understand how miRNAs and sRNAs respond to drought stress in cereal crops.


Subject(s)
Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Hordeum/genetics , MicroRNAs/genetics , Water/metabolism , Base Sequence , Chloroplasts/genetics , High-Throughput Nucleotide Sequencing , MicroRNAs/metabolism , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Repetitive Sequences, Nucleic Acid/genetics , Reproducibility of Results
12.
Virus Res ; 189: 243-7, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-24905287

ABSTRACT

Symptom expression of yellow speckle disease was studied in a row of 32 individual Vitis vinifera cv. Chardonnay vines in the warmer summer of 2009/2010 as compared with the cooler summer of 2011/2012 in South Australia. RT-PCR analysis showed that all these vines were positive for hop stunt viroid, grapevine yellow speckle viroid 1 (GYSVd-1) and grapevine rupestris stem pitting-associated virus. Four vines named Vines 1, 8, 11 and 15 were selected for further analyses. Vines 1 and 8 had never shown yellow speckle (YS) symptoms, Vine 11 had always been symptomatic, and Vine 15 showed YS symptoms only in the summer of 2009/2010, but not in 2011/2012. Analysis of partial nucleotide (nt) sequence of GYSVd-1 from these vines showed two major sequence polymorphisms in the pathogenicity domain coinciding with the YS symptoms and the prevailing temperature in each season. One group designated UA group had a uridine (U) at position 309 and an adenine (A) at position 311, while another group designated AU group had the other way around: an "A" at position 309 and a "U" at position 311. The AU group had never been reported before. The AU group was a minor variant in the GYSVd-1 population and not present in symptomatic Vine 11. In contrast, the UA group was dominant and present in all the vine samples. Surprisingly, all the asymptomatic vines, but not symptomatic vines, had the signature of the AU group. Whether the AU group is associated with the YS symptom expression is interesting. Our result provides a new insight into the sequence variability of viroid-inducing symptoms during two significantly different growing seasons.


Subject(s)
Plant Diseases/virology , Polymorphism, Genetic , Viroids/genetics , Vitis/radiation effects , Vitis/virology , Flexiviridae/isolation & purification , Sequence Analysis, DNA , South Australia , Temperature , Viroids/isolation & purification
13.
BMC Plant Biol ; 13: 214, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24330740

ABSTRACT

BACKGROUND: miR399 and miR827 are both involved in conserved phosphorus (P) deficiency signalling pathways. miR399 targets the PHO2 gene encoding E2 enzyme that negatively regulates phosphate uptake and root-to-shoot allocation, while miR827 targets SPX-domain-containing genes that negatively regulate other P-responsive genes. However, the response of miR399 and miR827 to P conditions in barley has not been investigated. RESULTS: In this study, we investigated the expression profiles of miR399 and miR827 in barley (Hordeum vulagre L.) under P-deficient and P-sufficient conditions. We identified 10 members of the miR399 family and one miR827 gene in barley, all of which were significantly up-regulated under deficient P. In addition, we found many isomirs of the miR399 family and miR827, most of which were also significantly up-regulated under deficient P. Several isomirs of miR399 members were found to be able to cleave their predicted targets in vivo. Surprisingly, a few small RNAs (sRNAs) derived from the single-stranded loops of the hairpin structures of MIR399b and MIR399e-1 were also found to be able to cleave their predicted targets in vivo. Many antisense sRNAs of miR399 and a few for miR827 were also detected, but they did not seem to be regulated by P. Intriguingly, the lowest expressed member, hvu-miR399k, had four-fold more antisense sRNAs than sense sRNAs, and furthermore under P sufficiency, the antisense sRNAs are more frequent than the sense sRNAs. We identified a potential regulatory network among miR399, its target HvPHO2 and target mimics HvIPS1 and HvIPS2 in barley under P-deficient and P-sufficient conditions. CONCLUSIONS: Our data provide an important insight into the mechanistic regulation and function of miR399, miR827 and their isomirs in barley under different P conditions.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , MicroRNAs/genetics , Phosphorus/deficiency , Phosphorus/metabolism , RNA, Plant/genetics , Hordeum/metabolism
14.
DNA Res ; 20(2): 109-25, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23266877

ABSTRACT

Phosphorus (P) is essential for plant growth. MicroRNAs (miRNAs) play a key role in phosphate homeostasis. However, little is known about P effect on miRNA expression in barley (Hordeum vulgare L.). In this study, we used Illumina's next-generation sequencing technology to sequence small RNAs (sRNAs) in barley grown under P-deficient and P-sufficient conditions. We identified 221 conserved miRNAs and 12 novel miRNAs, of which 55 were only present in P-deficient treatment while 32 only existed in P-sufficient treatment. Total 47 miRNAs were significantly differentially expressed between the two P treatments (|log2| > 1). We also identified many other classes of sRNAs, including sense and antisense sRNAs, repeat-associated sRNAs, transfer RNA (tRNA)-derived sRNAs and chloroplast-derived sRNAs, and some of which were also significantly differentially expressed between the two P treatments. Of all the sRNAs identified, antisense sRNAs were the most abundant sRNA class in both P treatments. Surprisingly, about one-fourth of sRNAs were derived from the chloroplast genome, and a chloroplast-encoded tRNA-derived sRNA was the most abundant sRNA of all the sRNAs sequenced. Our data provide valuable clues for understanding the properties of sRNAs and new insights into the potential roles of miRNAs and other classes of sRNAs in the control of phosphate homeostasis.


Subject(s)
Hordeum/genetics , RNA, Plant/metabolism , RNA, Small Untranslated/genetics , Transcriptome , Base Sequence , Gene Expression Regulation, Plant , Genome, Chloroplast , Hordeum/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphorus/metabolism , RNA, Plant/genetics , RNA, Small Untranslated/metabolism , Sequence Analysis, RNA
15.
PLoS One ; 7(8): e42030, 2012.
Article in English | MEDLINE | ID: mdl-22870277

ABSTRACT

Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log(2)| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Hordeum/metabolism , MicroRNAs/biosynthesis , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , RNA, Plant/biosynthesis , DNA-Binding Proteins/genetics , Genome, Chloroplast/genetics , Hordeum/genetics , MicroRNAs/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , RNA, Plant/genetics , Species Specificity
16.
BMC Genomics ; 12: 521, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22014081

ABSTRACT

BACKGROUND: Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. RESULTS: A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. CONCLUSIONS: The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species.


Subject(s)
Chromosomes, Artificial, Bacterial , Gene Library , Genome, Plant , Genomics , Lupinus/genetics , Lupinus/classification , Principal Component Analysis , Sequence Analysis, DNA
17.
J Gen Virol ; 92(Pt 12): 2706-2710, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21880843

ABSTRACT

The roles for various regions of the 2b protein in infection, hypervirulence and recombination were examined by introducing stop codons in a chimeric virus containing RNA 1 from the cucumber mosaic virus (CMV strain Q), RNA 3 from the tomato aspermy virus (TAV) and RNA 2 of CMV with a 2b gene from TAV. Chimeric virus expressing the intact 2b protein induced severe symptoms in inoculated Nicotiana clevelandii and Nicotiana glutinosa and facilitated CMV-TAV recombination, while chimeric viruses not expressing 2b protein did not infect plants systemically. Chimeric viruses expressing either the N-terminal 43 or 12 aa of the 2b protein infected both plant species systemically and facilitated CMV-TAV recombination, but induced mild symptoms and no symptoms in the infected plants, respectively. These data suggest that oligopeptides can have important functions in the biology of viruses and prompt a re-examination of existing small ORFs in sequenced virus genomes.


Subject(s)
Plant Diseases/virology , Plant Viruses/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Cucumovirus/genetics , Cucumovirus/pathogenicity , Solanum lycopersicum/virology , Open Reading Frames , Plant Viruses/pathogenicity , RNA, Viral/metabolism , Recombination, Genetic , Nicotiana/virology , Viral Proteins/metabolism
18.
BMC Genomics ; 12: 247, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21595870

ABSTRACT

BACKGROUND: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. RESULT: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with <30 or >250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. CONCLUSION: BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Cloning, Molecular/methods , Genomic Library , Hordeum/genetics , Physical Chromosome Mapping/methods , Genome, Plant/genetics , Genotype , Reproducibility of Results
19.
Plant Physiol ; 156(3): 1217-29, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21606317

ABSTRACT

Genetic variation in phosphorus (P) efficiency exists among wheat (Triticum aestivum) and barley (Hordeum vulgare) genotypes, but the underlying mechanisms for the variation remain elusive. High- and low-affinity phosphate (Pi) PHT1 transporters play an indispensable role in P acquisition and remobilization. However, little is known about genetic variation in PHT1 gene expression and association with P acquisition efficiency (PAE) and P utilization efficiency (PUE). Here, we present quantitative analyses of transcript levels of high- and low-affinity PHT1 Pi transporters in four barley genotypes differing in PAE. The results showed that there was no clear pattern in the expression of four paralogs of the high-affinity Pi transporter HvPHT1;1 among the four barley genotypes, but the expression of a low-affinity Pi transporter, HvPHT1;6, and its close homolog HvHPT1;3 was correlated with the genotypes differing in PUE. Interestingly, the expression of HvPHT1;6 and HvPHT1;3 was correlated with the expression of HvIPS1 (for P starvation inducible; noncoding RNA) but not with HvIPS2, suggesting that HvIPS1 plays a distinct role in the regulation of the low-affinity Pi transporters. In addition, high PUE was found to be associated with high root-shoot ratios in low-P conditions, indicating that high carbohydrate partitioning into roots occurs simultaneously with high PUE. However, high PUE accompanying high carbon partitioning into roots could result in low PAE. Therefore, the optimization of PUE through the modification of low-affinity Pi transporter expression may assist further improvement of PAE for low-input agriculture systems.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , Phosphate Transport Proteins/genetics , Phosphates/metabolism , Plant Proteins/genetics , RNA, Untranslated/genetics , Amino Acid Sequence , Base Sequence , Biomass , Conserved Sequence/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Genotype , Hordeum/drug effects , Hordeum/growth & development , Hordeum/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Nucleic Acid Heteroduplexes/genetics , Phosphate Transport Proteins/metabolism , Phosphates/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Sequence Homology, Nucleic Acid
20.
Biotechniques ; 50(3): 165-74, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21486237

ABSTRACT

Second-generation sequencing now provides the potential for low-cost generation of whole-genome sequences. However, for large-genome organisms with high repetitive DNA content, genome-wide short read sequence assembly is currently impossible, with accurate ordering and localization of genes still relying heavily on integration with physical and genetic maps. To facilitate this process, we have used Agilent microarrays to simultaneously address thousands of gene sequences to individual BAC clones and contiguous sequences that form part of an emerging physical map of the large and currently unsequenced 5.3-Gb barley genome. The approach represents a cost-effective, highly parallel alternative to traditional addressing methods. By coupling the gene-to-BAC address data with gene-based molecular markers, thousands of BACs can be anchored directly to the genetic map, thereby generating a framework for orientating and ordering genes, and providing direct links to phenotypic traits.


Subject(s)
Chromosomes, Artificial, Bacterial , DNA, Plant/genetics , Hordeum/genetics , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Genome, Plant , High-Throughput Nucleotide Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL