Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 430-438, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38678322

ABSTRACT

Objective: To investigate the effect of serine/arginine-rich splicing factor 2 (SRSF2) on ferroptosis and its possible mechanism in glioblastoma cells. Methods: The online database of gene expression profiling interactive analysis 2 (GEPIA 2) and Chinese Glioma Genome Atlas were used to analyze the expression of SRSF2 in glioblastoma tissue and its association with patients prognosis. To validate the findings of the online databases, the pathological sections of glioblastoma and non-tumor brain tissues from Tianjin Medical University General Hospital, Tianjin, China were collected and analyzed by using immunohistochemistry. Silencing SRSF2 gene expression in glioblastoma cells by siRNA was analyzed with Western blot. The proliferation index was detected by using CCK8 assay. The rescued experiment was conducted by using expression plasmid of pcDNA3.1(+)-SRSF2. The activity of ferroptosis was assessed by using the levels of iron ions and malondialdehyde in glioblastoma cells and the changes in the ratio of glutathione to oxidized glutathione. The changes of gene expression and differential pre-mRNA alternative splicing (PMAS) induced by SRSF2 were monitored by using the third-generation sequencing technology analysis, namely Oxford nanopore technologies (ONT) sequencing analysis. Results: SRSF2 expression was higher in glioblastoma tissues than non-tumor brain tissues. Immunohistochemistry also showed a positive rate of 88.48%±4.60% in glioblastoma tissue which was much higher than the 9.97%±4.57% in non-tumor brain tissue. The expression of SRSF2 was inversely correlated with overall and disease-free disease survivals (P<0.01). The proliferation index of glioblastoma cells was significantly reduced by silencing with SRSF2 siRNA (P<0.01) and could be reversed with transfection of exogenous SRSF2. The levels of intracellulariron ions and malondialdehyde increased (P<0.05), but the glutathione/oxidized glutathione ratio and the expression of key proteins in the glutathione pathway remained unchanged (P>0.05). ONT sequencing results showed that silencing SRSF2 in glioblastoma cells could induce a significant alternative 3' splice site change on ferroptosis suppressor protein 1 (FSP1). Conclusion: SRSF2 inhibits the ferroptosis in glioblastoma cells and promotes their proliferation, which may be achieved by regulating FSP1 PMAS.


Subject(s)
Alternative Splicing , Brain Neoplasms , Cell Proliferation , Ferritins , Ferroptosis , Glioblastoma , Oxidoreductases , Serine-Arginine Splicing Factors , Humans , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Prognosis , RNA, Small Interfering/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
2.
Sensors (Basel) ; 24(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276339

ABSTRACT

Automatic fall detection plays a significant role in monitoring the health of senior citizens. In particular, millimeter-wave radar sensors are relevant for human pose recognition in an indoor environment due to their advantages of privacy protection, low hardware cost, and wide range of working conditions. However, low-quality point clouds from 4D radar diminish the reliability of fall detection. To improve the detection accuracy, conventional methods utilize more costly hardware. In this study, we propose a model that can provide high-quality three-dimensional point cloud images of the human body at a low cost. To improve the accuracy and effectiveness of fall detection, a system that extracts distribution features through small radar antenna arrays is developed. The proposed system achieved 99.1% and 98.9% accuracy on test datasets pertaining to new subjects and new environments, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL