Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 577
Filter
2.
BMC Med ; 22(1): 261, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915009

ABSTRACT

BACKGROUND: To assess the largely undetermined separate and joint effects of sleep and liver function biomarkers on liver cancer. METHODS: Data of 356,894 participants without cancer at baseline in the UK Biobank were analyzed. Sleep score was evaluated using five sleep traits (sleep duration, chronotype, insomnia, snoring, and excessive daytime sleepiness) and dichotomized into healthy or unhealthy sleep. Circulating liver function biomarkers were measured. Cox proportional hazard model was performed to investigate the independent and joint associations of sleep and liver function biomarkers with liver cancer incidence. RESULTS: After a median follow-up time of 13.1 years, 394 cases of incident liver cancer were documented. The multivariable-adjusted hazard ratio (HR) for liver cancer was 1.46 (95% confidence interval: 1.15-1.85) associated with unhealthy sleep (vs. healthy sleep), and was 1.17 (1.15-1.20), 1.20 (1.18-1.22), 1.69 (1.47-1.93), 1.06 (1.06-1.07), 1.08 (1.07-1.09), 1.81 (1.37-2.39), or 0.29 (0.18-0.46) associated with each 10-unit increase in alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), total protein (TP), or albumin (ALB), respectively. Individuals with unhealthy sleep and high (≥ median) ALT, AST, TBIL, GGT, ALP, or TP or low (< median) ALB level had the highest HR of 3.65 (2.43-5.48), 4.03 (2.69-6.03), 1.97 (1.40-2.77), 4.69 (2.98-7.37), 2.51 (1.75-3.59), 2.09 (1.51-2.89), or 2.22 (1.55-3.17) for liver cancer, respectively. Significant additive interaction of unhealthy sleep with high TP level on liver cancer was observed with relative excess risk due to an interaction of 0.80 (0.19-1.41). CONCLUSIONS: Unhealthy sleep was associated with an increased risk of liver cancer, especially in participants with lower ALB levels or higher levels of ALT, AST, TBIL, GGT, ALP, or particularly TP.


Subject(s)
Biomarkers , Liver Neoplasms , Sleep , Humans , Male , Female , Middle Aged , Liver Neoplasms/epidemiology , Liver Neoplasms/blood , Prospective Studies , Sleep/physiology , Biomarkers/blood , Aged , United Kingdom/epidemiology , Adult , Incidence , Liver Function Tests , Risk Factors , Liver
3.
Sci Total Environ ; 944: 173777, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38844213

ABSTRACT

BACKGROUND: The association between exposure to air pollutants and cardiovascular disease (CVD) trajectory in individuals with circadian syndrome remains inconclusive. METHODS: The individual exposure levels of air pollutants, including particulate matter (PM) with aerodynamic diameter ≤ 2.5 µm (PM2.5), PM with aerodynamic diameter ≤ 10 µm (PM10), PM2.5 absorbance, PM with aerodynamic diameter between 2.5 µm and 10 µm, nitrogen dioxide (NO2), nitrogen oxides (NOx), and air pollution score (overall air pollutants exposure), were estimated for 48,850 participants with circadian syndrome from the UK Biobank. Multistate regression models were employed to estimate associations between exposure to air pollutants and trajectories from circadian syndrome to CVD/CVD subtypes (including coronary heart disease [CHD], atrial fibrillation [AF], heart failure [HF], and stroke) and death. Mediation roles of CVD/CVD subtypes in the associations between air pollutants and death were evaluated. RESULTS: After a mean follow-up time over 12 years, 12,570 cases of CVD occurred, including 8192 CHD, 1693 AF, 1085 HF, and 1600 stroke cases. In multistate model, per-interquartile range increment in PM2.5 (hazard ratio: 1.08; 95 % confidence interval: 1.06, 1.10), PM10 (1.04; 1.01, 1.06), PM2.5 absorbance (1.04; 1.02, 1.06), NO2 (1.07; 1.03, 1.11), NOx (1.08; 1.04, 1.12), or air pollution score (1.06; 1.03, 1.08) was associated with trajectory from circadian syndrome to CVD. Significant associations between the above-mentioned air pollutants and trajectories from circadian syndrome and CVD to death were observed. CVD, particularly CHD, significantly mediated the associations of PM2.5, NO2, NOx, and air pollution score with death. CONCLUSIONS: Long-term exposure to air pollutants during circadian syndrome was associated with subsequent CVD and death. CHD emerged as the most prominent CVD subtype in CVD progression driven by exposure to air pollutants during circadian syndrome. Our study highlights the importance of controlling air pollutants exposure and preventing CHD in people with circadian syndrome.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Environmental Exposure , Particulate Matter , Humans , Air Pollutants/analysis , Cardiovascular Diseases/mortality , Particulate Matter/analysis , Environmental Exposure/statistics & numerical data , Male , Air Pollution/statistics & numerical data , Female , Middle Aged , Chronobiology Disorders , Aged , Adult , Nitrogen Oxides/analysis , United Kingdom/epidemiology , Nitrogen Dioxide/analysis
4.
J Org Chem ; 89(10): 6729-6739, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38690961

ABSTRACT

We have developed a Tf2O-mediated approach for the direct amination of either P(O)-OH or P(O)-H reagents with a variety of aliphatic or aromatic amines. Without the requirement of precious metals and toxic reagents, this protocol provides an alternative route to various phosphinamides and phosphoramides. The reaction proceeds under simple and mild conditions and can be effectively scaled up with similar efficiency.

5.
Environ Int ; 188: 108773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810493

ABSTRACT

BACKGROUND: Long-term air pollution exposure is a major health concern, yet its associations with thyroid dysfunction (hyperthyroidism and hypothyroidism) and biological aging remain unclear. We aimed to determine the association of long-term air pollution exposure with thyroid dysfunction and to investigate the potential roles of biological aging. METHODS: A prospective cohort study was conducted on 432,340 participants with available data on air pollutants including particulate matter (PM2.5, PM10, and PM2.5-10), nitrogen dioxide (NO2), and nitric oxide (NO) from the UK Biobank. An air pollution score was calculated using principal component analysis to reflect joint exposure to these pollutants. Biological aging was assessed using the Klemera-Doubal method biological age and the phenotypic age algorithms. The associations of individual and joint air pollutants with thyroid dysfunction were estimated using the Cox proportional hazards regression model. The roles of biological aging were explored using interaction and mediation analyses. RESULTS: During a median follow-up of 12.41 years, 1,721 (0.40 %) and 9,296 (2.15 %) participants developed hyperthyroidism and hypothyroidism, respectively. All air pollutants were observed to be significantly associated with an increased risk of incident hypothyroidism, while PM2.5, PM10, and NO2 were observed to be significantly associated with an increased risk of incident hyperthyroidism. The hazard ratios (HRs) for hyperthyroidism and hypothyroidism were 1.15 (95 % confidence interval: 1.00-1.32) and 1.15 (1.08-1.22) for individuals in the highest quartile compared with those in the lowest quartile of air pollution score, respectively. Additionally, we noticed that individuals with higher pollutant levels and biologically older generally had a higher risk of incident thyroid dysfunction. Moreover, accelerated biological aging partially mediated 1.9 %-9.4 % of air pollution-associated thyroid dysfunction. CONCLUSIONS: Despite the possible underestimation of incident thyroid dysfunction, long-term air pollution exposure may increase the risk of incident thyroid dysfunction, particularly in biologically older participants, with biological aging potentially involved in the mechanisms.


Subject(s)
Aging , Air Pollutants , Air Pollution , Environmental Exposure , Particulate Matter , Humans , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Prospective Studies , Male , Middle Aged , Female , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Adult , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Hypothyroidism/epidemiology , Hypothyroidism/chemically induced , Aged , Nitrogen Dioxide/analysis , Hyperthyroidism/chemically induced , Hyperthyroidism/epidemiology , United Kingdom/epidemiology , Thyroid Diseases/epidemiology , Thyroid Diseases/chemically induced , Nitric Oxide
6.
Vet Res ; 55(1): 44, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589930

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Subject(s)
Alphacoronavirus , Nucleocapsid Proteins , Animals , Swine , Alphacoronavirus/metabolism , Interferons/genetics , DEAD Box Protein 58/metabolism
7.
World J Diabetes ; 15(4): 712-723, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38680693

ABSTRACT

BACKGROUND: Dyslipidemia is frequently present in patients with diabetes. The associations of remnant cholesterol and mortality remains unclear in patients with diabetes. AIM: To explore the associations of remnant cholesterol with all-cause and cardiovascular mortality in patients with diabetes. METHODS: This prospective cohort study included 4740 patients with diabetes who participated in the National Health and Nutrition Examination Survey from 1999 through 2018. Remnant cholesterol was used as the exposure variable, and all-cause and cardiovascular mortality were considered outcome events. Outcome data were obtained from the National Death Index, and all participants were followed from the interview date until death or December 31, 2019. Multivariate proportional Cox regression models were used to explore the associations between exposure and outcomes, in which remnant cholesterol was modeled as both a categorical and a continuous variable. Restricted cubic splines (RCSs) were calculated to assess the nonlinearity of associations. Subgroup (stratified by sex, age, body mass index, and duration of diabetes) and a series of sensitivity analyses were performed to evaluate the robustness of the associations. RESULTS: During a median follow-up duration of 83 months, 1370 all-cause deaths and 389 cardiovascular deaths were documented. Patients with remnant cholesterol levels in the third quartile had a reduced risk of all-cause mortality [hazard ratio (HR) 95% confidence interval (CI): 0.66 (0.52-0.85)]; however, when remnant cholesterol was modeled as a continuous variable, it was associated with increased risks of all-cause [HR (95%CI): 1.12 (1.02-1.21) per SD] and cardiovascular [HR (95%CI): 1.16 (1.01-1.32), per SD] mortality. The RCS demonstrated nonlinear associations of remnant cholesterol with all-cause and cardiovascular mortality. Subgroup and sensitivity analyses did not reveal significant differences from the above results. CONCLUSION: In patients with diabetes, higher remnant cholesterol was associated with increased risks of all-cause and cardiovascular mortality, and diabetes patients with slightly higher remnant cholesterol (0.68-1.04 mmol/L) had a lower risk of all-cause mortality.

8.
Vet Microbiol ; 292: 110036, 2024 May.
Article in English | MEDLINE | ID: mdl-38458048

ABSTRACT

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Subject(s)
Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
9.
Surg Endosc ; 38(5): 2465-2474, 2024 May.
Article in English | MEDLINE | ID: mdl-38456946

ABSTRACT

BACKGROUND: Bile duct leaks (BDLs) are serious complications that occurs after hepatobiliary surgery and trauma, leading to rapid clinical deterioration. Endoscopic retrograde cholangiopancreatography (ERCP) is the first-line treatment for BDLs, but it is not clear which patients will respond to this therapy and which patients will require additional surgical intervention. The aim of our study was to explore the predictors of successful ERCP for BDLs. METHODS: A retrospective analysis was conducted using data from six centers' databases. All consecutive patients who were clinically confirmed as BDLs were included in the study. Collected data were demographics, disease severity, and ERCP procedure characteristics. Univariate and multivariate analysis were used to select independent predictive factors that affect the outcome of ERCP for BDLs, and a nomogram was established. Calibration and ROC curves were used to evaluate the models. RESULTS: Four hundred and forty-eight consecutive patients were clinically confirmed as BDLs and 347 were excluded. In the 101 patients included patients, clinical success was achieved in 78 patients (77.2%). In logistic multivariable regression, two independent factors were negatively associated with the success of ERCP: SIRS (OR, 0.183; 95% CI 0.039-0.864; P = 0.032) and high-grade leak (OR 0.073; 95% CI 0.010-0.539; P = 0.010). Two independent factors were positively associated with the success of ERCP: leak-bridging drainage (OR 4.792; 95% CI 1.08-21.21; P = 0.039) and cystic duct leak (OR 6.193; 95% CI 1.03-37.17; P = 0.046). The prediction model with these four factors was evaluated using a receiver-operating characteristic (ROC) curve, which demonstrated an area under the curve of 0.9351. The calibration curve showed that the model had good predictive accuracy. CONCLUSION: Leak-bridging drainage and cystic duct leak are positive predictors for the success of ERCP, while SIRS and high-grade leak are negative predictors. This prediction model with nomogram has good predictive ability and practical clinical value, and may be helpful in clinical decision-making and prognostication.


Subject(s)
Cholangiopancreatography, Endoscopic Retrograde , Nomograms , Humans , Cholangiopancreatography, Endoscopic Retrograde/methods , Male , Female , Retrospective Studies , Middle Aged , Aged , Postoperative Complications/etiology , Treatment Outcome , Adult , Bile Duct Diseases/surgery , Anastomotic Leak/etiology
10.
Biomed Pharmacother ; 173: 116321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394849

ABSTRACT

BACKGROUND: Cerebral palsy (CP) is a condition resulting from perinatal brain injury and can lead to physical disabilities. Exosomes derived from human amniotic mesenchymal stromal cells (hAMSC-Exos) hold promise as potential therapeutic options. OBJECTIVE: This study aimed to investigate the impact of hAMSC-Exos on neuronal cells and their role in regulating apoptosis both in vitro and in vivo. METHODS: hAMSC-Exos were isolated via ultracentrifugation and characterized via transmission electron microscopy, particle size analysis, and flow cytometry. In vitro, neuronal damage was induced by lipopolysaccharide (LPS). CP rat models were established via left common carotid artery ligation. Apoptosis levels in cells and CP rats were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, and TUNEL analysis. RESULTS: The results demonstrated successful isolation of hAMSC-Exos via ultracentrifugation, as the isolated cells were positive for CD9 (79.7%) and CD63 (80.2%). Treatment with hAMSC-Exos significantly mitigated the reduction in cell viability induced by LPS. Flow cytometry revealed that LPS-induced damage promoted apoptosis, but this effect was attenuated by treatment with hAMSC-Exos. Additionally, the expression of caspase-3 and caspase-9 and the Bcl-2/Bax ratio indicated that excessive apoptosis could be attenuated by treatment with hAMSC-Exos. Furthermore, tail vein injection of hAMSC-Exos improved the neurobehavioral function of CP rats. Histological analysis via HE and TUNEL staining showed that apoptosis-related damage was attenuated following hAMSC-Exo treatment. CONCLUSIONS: In conclusion, hAMSC-Exos effectively promote neuronal cell survival by regulating apoptosis, indicating their potential as a promising therapeutic option for CP that merits further investigation.


Subject(s)
Cerebral Palsy , Exosomes , Mesenchymal Stem Cells , Humans , Rats , Animals , Exosomes/metabolism , Cerebral Palsy/therapy , Cerebral Palsy/metabolism , Lipopolysaccharides/pharmacology , Apoptosis , Ischemia/metabolism , Mesenchymal Stem Cells/metabolism
11.
Fitoterapia ; 174: 105867, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382891

ABSTRACT

The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 µM. Among them, compound 3g (IC50 = 32.07 ± 2.00 µM) and compound 3n (IC50 = 34.78 ± 0.34 µM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Phenols , Humans , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Drug Design
12.
J Virol ; 98(3): e0198223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411106

ABSTRACT

Continuously emerging highly pathogenic coronaviruses remain a major threat to human and animal health. Porcine deltacoronavirus (PDCoV) is a newly emerging enterotropic swine coronavirus that causes large-scale outbreaks of severe diarrhea disease in piglets. Unlike other porcine coronaviruses, PDCoV has a wide range of species tissue tropism, including primary human cells, which poses a significant risk of cross-species transmission. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) has a key role in linking host innate immunity to microbes and the regulation of inflammatory pathways. We now report a role for NLRP1 in the control of PDCoV infection. Overexpression of NLRP1 remarkably suppressed PDCoV infection, whereas knockout of NLRP1 led to a significant increase in PDCoV replication. A mechanistic study revealed that NLRP1 suppressed PDCoV replication in cells by upregulating IL-11 expression, which in turn inhibited the phosphorylation of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor U0126 effectively hindered PDCoV replication in pigs. Together, our results demonstrated that NLRP1 exerted an anti-PDCoV effect by IL-11-mediated inhibition of the phosphorylation of the ERK signaling pathway, providing a novel antiviral signal axis of NLRP1-IL-11-ERK. This study expands our understanding of the regulatory network of NLRP1 in the host defense against virus infection and provides a new insight into the treatment of coronaviruses and the development of corresponding drugs.IMPORTANCECoronavirus, which mainly infects gastrointestinal and respiratory epithelial cells in vivo, poses a huge threat to both humans and animals. Although porcine deltacoronavirus (PDCoV) is known to primarily cause fatal diarrhea in piglets, reports detected in plasma samples from Haitian children emphasize the potential risk of animal-to-human spillover. Finding effective therapeutics against coronaviruses is crucial for controlling viral infection. Nucleotide-binding oligomerization-like receptor (NLR) family pyrin domain-containing 1 (NLRP1), a key regulatory factor in the innate immune system, is highly expressed in epithelial cells and associated with the pathogenesis of viruses. We demonstrate here that NLRP1 inhibits the infection of the intestinal coronavirus PDCoV through IL-11-mediated phosphorylation inhibition of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor can control the infection of PDCoV in pigs. Our study emphasizes the importance of NLRP1 as an immune regulatory factor and may open up new avenues for the treatment of coronavirus infection.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Swine Diseases , Animals , Child , Humans , Diarrhea , Haiti , Interleukin-11/metabolism , NLR Proteins/metabolism , Nucleotides/metabolism , Phosphorylation , Signal Transduction , Swine , Zoonoses/metabolism
13.
Gene ; 893: 147938, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38381508

ABSTRACT

This study aimed to investigate the species diversity and genetic differentiation of the genome of the main cultivated strains of Ganoderma in China. Population genomics analysis was conducted based on 150 cultivated strains of Ganoderma collected nationwide. The results indicated that the main species currently cultivated in China were Ganoderma sichuanense and Ganoderma lucidum, with a minor proportion of Ganoderma sessile, Ganoderma weberianum, Ganoderma sinense, Ganoderma gibbosum and Ganoderma australe. A total of 336,506 high-quality single nucleotide polymorphism (SNP) loci were obtained through population evolution analysis. The Fst values were calculated using a 5-kb sliding window, which ranged from 0.11 to 0.74. This suggests varying degrees of genetic differentiation between populations and genetic exchange among varieties. On this basis, the genes related to the stipe length, cap color and branch phenotypes of Ganoderma were excavated, and the region with the top 1% ZFst value region was used as a candidate region. A total of 137, 270 and 222 candidate genes were identified in the aforementioned 3 phenotypes, respectively. Gene annotation revealed that genes associated with stipe length were mainly related to cell division and differentiation, including proteins such as Nse4 protein and DIM1 protein. The genes related to Ganoderma red color were mainly related to the metabolism of tryptophan and flavonoids. The genes related to the branch were mainly related to cytokinin synthesis, ABC transporter and cytochrome P450. This study provided 150 valuable genome resequencing data in assessing the diversity and genetic differentiation of Ganoderma and laid a foundation for agronomic trait analysis and the development of new varieties of Ganoderma.


Subject(s)
Ganoderma , Genetics, Population , Genetic Drift , Ganoderma/genetics , China
14.
Virus Res ; 341: 199329, 2024 03.
Article in English | MEDLINE | ID: mdl-38262568

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel enteric coronavirus that can cause vomiting, watery diarrhea in pigs and the death of piglets. The open reading frame (ORF) 5 is one of the accessory genes in PDCoV genome and encodes an accessory protein NS6. To date, the function of NS6 is still unclear. In this study, the recombinant NS6 was successfully expressed in prokaryotic expression system and purified. To prepare monoclonal antibody (mAb), six-week-old female BALB/c mice were primed subcutaneously with purified NS6. A novel mouse mAb against NS6 was obtained and designated as 3D5. The isotype of 3D5 is IgG2b with kappa (κ) light chain. 3D5 can specifically recognizes the natural NS6 in swine testis (ST) cells infected with PDCoV and expressed NS6 in human embryonic kidney 293T (HEK 293T) cells transfected with mammalian vector. The minimal linear B cell epitope recognised by 3D5 on NS6 was 25VPELIDPLVK34 determined by peptide scanning and named EP-3D5. The sequence of EP-3D5 is completely conserved among PDCoV strains. Moreover, six to nine residues of EP-3D5 were identified to be conserved in non-PDCoV strains. These results provide valuable insights into the antigenic structure and function of NS6 in virus pathogenesis, and aid for the development of PDCoV epitope-associated diagnostics and vaccine design.


Subject(s)
Coronavirus Infections , Swine Diseases , Male , Mice , Swine , Animals , Female , Humans , Deltacoronavirus , Diarrhea , Epitopes, B-Lymphocyte , Coronavirus Infections/veterinary , Mammals
15.
Food Funct ; 15(3): 1369-1378, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38206082

ABSTRACT

Osteoporosis, a condition that is characterized by low bone mineral density (BMD), is a serious health concern worldwide. This study aims to explore the relationship between whole egg consumption and BMD levels in the US population. This study involves 19 208 participants with valid BMD and egg consumption data from the National Health and Nutrition Examination Survey (NHANES) during 2005-2006, 2007-2008, 2009-2010, 2013-2014 and 2017-2018. Linear regression analysis was conducted to evaluate the association between whole egg consumption and BMD levels. Mediation analysis was used to investigate the role of serum alkaline phosphatase (ALP) in the above relationship. After multivariate adjustment, participants consuming whole eggs over 3.53 ounce per day in their diet were found to have elevated BMD levels in the femur (0.013 g cm-2 with 95% CI: 0.004, 0.022) and lumbar spine (0.013 g cm-2 with 95% CI: 0.002, 0.024) (Ptrend < 0.05). The additive interaction of egg consumption and body mass index (BMI) on the BMD of both the femur and lumbar spine (Pinteraction < 0.05) was also analyzed. The association between whole egg consumption and BMD of both the femur and lumbar spine were significantly mediated by ALP with 71.8% and 83.3% mediation proportion, respectively. In general, higher whole egg consumption is positively related to an increase in the BMD scores of both the femur and lumbar spine among the US population.


Subject(s)
Bone Density , Femur Neck , Humans , Nutrition Surveys , Absorptiometry, Photon , Cross-Sectional Studies , Lumbar Vertebrae
16.
Bioresour Technol ; 393: 130160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070578

ABSTRACT

An active, high surface area, recyclable, magnetic, basic, iron oxide-based nanocatalyst was developed from banana leaves waste and used for microwave-assisted transesterification of soybean oil to biodiesel. According to the Hammett indicator, the catalyst has a high total basicity of 15 < H < 18.4. After optimization through the response surface methodology, the reaction allows 96.5 % biodiesel yield in the presence of 24:1 methanol to soybean oil molar ratio, 6 wt% BLW@Fe3O4, 0.5 h at 65 °C. The magnetic nature of the catalyst improves reusability for up to 6 cycles. Thermodynamic analyses showed that transesterification of soybean oil to biodiesel is an endothermic reaction. Moreover, the catalyst has the potential to reduce biodiesel production costs by utilizing abundant biomass waste materials. The calculated cost for 1 kg of catalyst is $1.14, while the biodiesel's cost per kg produced in this work is merely $1.05, showing high commercial viability.


Subject(s)
Ferrosoferric Oxide , Soybean Oil , Biofuels , Thermodynamics , Catalysis , Esterification , Costs and Cost Analysis , Plant Oils
17.
Br J Clin Pharmacol ; 90(2): 452-462, 2024 02.
Article in English | MEDLINE | ID: mdl-37749762

ABSTRACT

AIMS: This study aims to establish a population pharmacokinetic (PK) model of teicoplanin in Chinese adult patients to evaluate the dosing regimen in the label sheet and optimize it. METHODS: Nonlinear mixed-effects modelling was used to estimate PK parameters. Monte Carlo simulations were used to evaluate the attainment of various dosing regimens in achieving the target trough concentrations in patients with normal or decreased renal function. RESULTS: A total of 115 patients were enrolled in this retrospective study. Creatinine clearance (CrCL) and albumin (ALB) were identified as covariates on the clearance of teicoplanin. For the treatment of non-complicated methicillin-resistant Staphylococcus aureus (MRSA) infections in patients with normal renal function and serum ALB concentration, the recommended dosing regimen was 600 mg q12h with five administrations as the loading dose followed by 600 mg qd as the maintenance dose; for the treatment of serious and/or complicated MRSA infections, the recommended dosing regimen was 800 mg q12h with five administrations as the loading dose followed by 800 mg qd as the maintenance dose. It is worth noting that both the loading and maintenance doses ought to be modified based on the patient's renal function and serum ALB concentration. In addition, trough concentrations of teicoplanin were significantly increased every other week. CONCLUSIONS: Both loading dosing and maintenance dosing regimens were recommended to be adjusted according to patient's renal function and serum ALB concentration. In addition, it is necessary to perform follow-up therapeutic drug monitoring of teicoplanin at least once every week.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adult , Humans , Teicoplanin/therapeutic use , Anti-Bacterial Agents , Retrospective Studies , Drug Monitoring , Serum Albumin , Staphylococcal Infections/drug therapy
18.
Diabetes Metab Res Rev ; 40(2): e3729, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37750562

ABSTRACT

AIMS: To explore the association of dietary vitamin intake from food and/or supplement with mortality in US adults with diabetes. MATERIALS AND METHODS: This prospective cohort study was conducted on 5418 US adults with diabetes from the National Health and Nutrition Examination Survey 1999-2018. Vitamin intake from food and supplements was estimated via dietary recall. Sufficient intake from food or food + supplement was defined as ≥ estimated average requirement (EAR) and ≤ tolerable upper intake level (UL), insufficient intake, < EAR; and excess intake, > UL. Medium supplementary intake was classified as > median level and ≤75th percentile; low intake, ≤ median level; and high intake, >75th percentile, as reported by supplement users. RESULTS: A total of 1601 deaths occurred among the participants over a median follow-up of 11.0 years. Cox regression analysis of the single-vitamin model demonstrated that sufficient vitamin A and folate intake from food and food + supplement and medium vitamin A and folate intake from supplement; sufficient riboflavin, niacin, and vitamin B6 intake from food and food + supplement; and sufficient thiamin and vitamin E intake from food + supplement were significantly associated with reduced all-cause mortality (all p < 0.05). In the multivitamin model, sufficient vitamin A and folate intake from food and food + supplement, medium vitamin A and folate intake from the supplement, and sufficient niacin intake from food and food + supplement were inversely associated with mortality (all p < 0.05). CONCLUSIONS: Vitamin A and folate intake from food or supplement and niacin intake from food were significantly associated with reduced mortality in US adults with diabetes.


Subject(s)
Diabetes Mellitus , Niacin , Adult , Humans , Vitamins , Nutrition Surveys , Vitamin A , Prospective Studies , Diet , Dietary Supplements , Folic Acid
19.
Brain Behav Immun ; 115: 143-156, 2024 01.
Article in English | MEDLINE | ID: mdl-37848095

ABSTRACT

Growing evidence suggests that neurovascular dysfunction characterized by blood-brain barrier (BBB) breakdown underlies the development of psychiatric disorders, such as major depressive disorder (MDD). Tight junction (TJ) proteins are critical modulators of homeostasis and BBB integrity. TJ protein Claudin-5 is the most dominant BBB component and is downregulated in numerous depression models; however, the underlying mechanisms remain elusive. Here, we demonstrate a molecular basis of BBB breakdown that links stress and depression. We implemented an animal model of depression, chronic unpredictable mild stress (CUMS) in male C57BL/6 mice, and showed that hippocampal BBB breakdown was closely associated with stress vulnerability. Concomitantly, we found that dysregulated Cldn5 level coupled with repression of the histone methylation signature at its promoter contributed to stress-induced BBB dysfunction and depression. Moreover, histone methyltransferase enhancer of zeste homolog 2 (EZH2) knockdown improved Cldn5 expression and alleviated depression-like behaviors by suppressing the tri-methylation of lysine 27 on histone 3 (H3K27me3) in chronically stressed mice. Furthermore, the stress-induced excessive transfer of peripheral cytokine tumor necrosis factor-α (TNF-α) into the hippocampus was prevented by Claudin-5 overexpression and EZH2 knockdown. Interestingly, antidepressant treatment could inhibit H3K27me3 deposition at the Cldn5 promoter, reversing the loss of the encoded protein and BBB damage. Considered together, these findings reveal the importance of the hippocampal EZH2-Claudin-5 axis in regulating neurovascular function and MDD development, providing potential therapeutic targets for this psychiatric illness.


Subject(s)
Blood-Brain Barrier , Depressive Disorder, Major , Humans , Male , Mice , Animals , Blood-Brain Barrier/metabolism , Tumor Necrosis Factor-alpha/metabolism , Histones/metabolism , Claudin-5/genetics , Claudin-5/metabolism , Depression/metabolism , Depressive Disorder, Major/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Mice, Inbred C57BL
20.
Environ Res ; 245: 118025, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38151153

ABSTRACT

The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.


Subject(s)
Chlorella vulgaris , Microalgae , Biofuels , Biomass , Fatty Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...