Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 31: 1-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37593494

ABSTRACT

Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(ß-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders.

2.
Bioengineering (Basel) ; 10(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627808

ABSTRACT

Biochips, a novel technology in the field of biomolecular analysis, offer a promising alternative to conventional testing equipment. These chips integrate multiple functions within a single system, providing a compact and efficient solution for various testing needs. For biochips, a pattern-control micro-electrode-dot-array (MEDA) is a new, universally viable design that can replace microchannels and other micro-components. In a Micro Electrode Dot Array (MEDA), each electrode can be programmatically controlled or dynamically grouped, allowing a single chip to fulfill the diverse requirements of different tests. This capability not only enhances flexibility, but also contributes to cost reduction by eliminating the need for multiple specialized chips. In this paper, we present a visible biochip testing system for tracking the entire testing process in real time, and describe our application of the system to detect SARS-CoV-2.

3.
Nat Commun ; 14(1): 2560, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37137915

ABSTRACT

Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1. Focusing on FOXF1, we found that FOXF1 is decreased in EC within human idiopathic pulmonary fibrosis (IPF) and mouse bleomycin-injured lungs. Endothelial-specific Foxf1 inhibition in mice increased collagen depositions, promoted lung inflammation, and impaired R-Ras signaling. In vitro, FOXF1-deficient EC increased proliferation, invasion and activation of human lung fibroblasts, and stimulated macrophage migration by secreting IL-6, TNFα, CCL2 and CXCL1. FOXF1 inhibited TNFα and CCL2 through direct transcriptional activation of Rras gene promoter. Transgenic overexpression or endothelial-specific nanoparticle delivery of Foxf1 cDNA decreased pulmonary fibrosis in bleomycin-injured mice. Nanoparticle delivery of FOXF1 cDNA can be considered for future therapies in IPF.


Subject(s)
Endothelial Cells , Idiopathic Pulmonary Fibrosis , Mice , Animals , Humans , Endothelial Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , DNA, Complementary/metabolism , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin/toxicity , Forkhead Transcription Factors/metabolism , Fibroblasts/metabolism
5.
Bioengineering (Basel) ; 10(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978671

ABSTRACT

A Cold Atmospheric Plasma (CAP) apparatus was designed and developed for SARS-CoV-2 killing as evaluated by pseudotyped viral infectivity assays. The reactive species generated by the plasma system was fully characterized by using Optical Emission Spectroscopy (OES) measurement under given conditions such as plasma power, flow rate, and treatment time. A variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) were identified from plasma plume with energies of 15-72 eV in the frequency range between 500-1000 nm. Systematic virus killing experiments were carried out, and the efficacy of CAP treatment in reducing SARS-CoV-2 viral infectivity was significant following treatment for 8 s, with further enhancement of killing upon longer exposures of 15-120 s. We correlated killing efficacy with the reactive species in terms of type, intensity, energy, and frequency. These experimental results demonstrate effective cold plasma virus killing via ROS and RNS under ambient conditions.

6.
Biologics ; 17: 43-55, 2023.
Article in English | MEDLINE | ID: mdl-36969329

ABSTRACT

Introduction: Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous administration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV. Methods: npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro-orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21). Results: With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality. Discussion: In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.

7.
Front Oncol ; 13: 1112859, 2023.
Article in English | MEDLINE | ID: mdl-36816948

ABSTRACT

Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients. In the present study, we found that the combination treatment with specific FOXM1 inhibitor RCM1 and low doses of vincristine is more effective in increasing apoptosis and decreasing RMS cell proliferation in vitro compared to single drugs alone. Since RCM1 is highly hydrophobic, we developed innovative nanoparticle delivery system containing poly-beta-amino-esters and folic acid (NPFA), which efficiently delivers RCM1 to mouse RMS tumors in vivo. The combination of low doses of vincristine together with intravenous administration of NPFA nanoparticles containing RCM1 effectively reduced RMS tumor volumes, increased tumor cell death and decreased tumor cell proliferation in RMS tumors compared to RCM1 or vincristine alone. The combination therapy was non-toxic as demonstrated by liver metabolic panels using peripheral blood serum. Using RNA-seq of dissected RMS tumors, we identified Chac1 as a uniquely downregulated gene after the combination treatment. Knockdown of Chac1 in RMS cells in vitro recapitulated the effects of the combination therapy. Altogether, combination treatment with low doses of vincristine and nanoparticle delivery of FOXM1 inhibitor RCM1 in a pre-clinical model of RMS has superior anti-tumor effects and decreases CHAC1 while reducing vincristine toxicity.

8.
Materials (Basel) ; 16(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676230

ABSTRACT

The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was found to be substantially higher than those of the discrete nanoparticle systems. The frequencies of the dominant relaxation mechanisms were determined by magnetic susceptibility measurements in the frequency range of 100 Hz-7 GHz. The loss mechanisms were identified in terms of Brownian relaxation (1 kHz-10 kHz) and gyromagnetic resonance of Fe3O4 (~1.12 GHz). It was observed that the microwave absorption of the Fe3O4 nanoparticles depend on the local environment surrounding the NPs, as well as the long-range dipole-dipole interactions. These significant findings will be profoundly important in magnetic hyperthermia medical therapeutics and energy applications.

9.
EBioMedicine ; 83: 104237, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36041264

ABSTRACT

Circulating tumor cells (CTCs) are tumor cells that shed from the primary tumor and intravasate into the peripheral blood circulation system responsible for metastasis. Sensitive detection of CTCs from clinical samples can serve as an effective tool in cancer diagnosis and prognosis through liquid biopsy. Current CTC detection technologies mainly reply on the biomarker-mediated platforms including magnetic beads, microfluidic chips or size-sensitive microfiltration which can compromise detection sensitivity due to tumor heterogeneity. A more sensitive, biomarker independent CTCs isolation technique has been recently developed with the surface-charged superparamagnetic nanoprobe capable of different EMT subpopulation CTC capture from 1 mL clinical blood. In this review, this new strategy is compared with the conventional techniques on biomarker specificity, impact of protein corona, effect of glycolysis on cell surface charge, and accurate CTC identification. Correlations between CTC enumeration and molecular profiling in clinical blood and cancer prognosis are provided for clinical cancer management.


Subject(s)
Neoplastic Cells, Circulating , Protein Corona , Biomarkers, Tumor/metabolism , Cell Separation/methods , Humans , Liquid Biopsy , Neoplastic Cells, Circulating/pathology , Prognosis
10.
Cancers (Basel) ; 13(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771438

ABSTRACT

A major challenge in cancer therapy is to achieve high cell targeting specificity for the highest therapeutic efficacy. Two major approaches have been shown to be quite effective, namely, (1) bio-marker mediated cell targeting, and (2) electrical charge driven cell binding. The former utilizes the tumor-specific moieties on nano carrier surfaces for active targeting, while the latter relies on nanoparticles binding onto the cancer cell surfaces due to differences in electrical charge. Cancer cells are known for their hallmark metabolic pattern: high rates of glycolysis that lead to negatively charged cell surfaces. In this study, the nanoparticles of Fe3O4@Cu2-xS were rendered positively charged by conjugating their surfaces with different functional groups for strong electrostatic binding onto the negatively-charged cancer cells. In addition to the positively charged surfaces, the Fe3O4@Cu2-xS nanoparticles were also modified with folic acid (FA) for biomarker-based cell targeting. The dual-targeting approach synergistically utilizes the effectiveness of both charge- and biomarker-based cell binding for enhanced cell targeting. Further, these superparamagnetic Fe3O4@Cu2-xS nanoparticles exhibit much stronger IR absorptions compared to Fe3O4, therefore much more effective in photothermal therapy.

11.
Med Devices Sens ; 4(1): e10163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33615150

ABSTRACT

The main clinical characteristics of COVID-19 are respiratory symptoms that can lead to serious cardiovascular damages and severe worsening of other medical conditions. One of the major strategies in preparedness and response to COVID 19 is effective utilization of personal protective equipment (PPE) among which the masks of different kinds are on the top of the list especially for activities in the public places. However, the underlying mechanisms of masks in preventing virus transmission have not been well identified and the current experimental data still show inconsistent outcomes that may mislead the public. For instance, the early understanding of the mask functions was limited especially in the escalating phase of the COVID 19 pandemic, resulting in quite controversial remarks on masks. Although extensive studies in mask functions have been carried out ever since the COVID-19 outbreaks, most of the investigations appear to have focused on exhalation isolation of individuals who may have been infected with the disease. Less emphasis was laid on inhalation protection from virus transmission, an important aspect that undergirds the public health policies and protective strategies. This review provides the most up-to-date information on the transmission modes of COVID-19 virus in terms of droplets and aerosols. The roles of masks in disease prevention and transmission reduction are evaluated on various types, structures and functions. More important, both aspects of exhalation isolation and inhalation protection are discussed based on virus transmission modes and the effectiveness of different types of masks under varied environmental conditions.

12.
Am J Respir Cell Mol Biol ; 64(3): 292-307, 2021 03.
Article in English | MEDLINE | ID: mdl-33095997

ABSTRACT

Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.


Subject(s)
Drug Delivery Systems/methods , Lung Diseases/drug therapy , Nanoparticles/therapeutic use , Animals , Biomedical Technology , Clinical Trials as Topic , Genetic Therapy , Humans
13.
Cell Rep ; 33(11): 108499, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326787

ABSTRACT

By incorporating an artificial reactive oxygen species (ROS) generation mechanism, a biotic/abiotic integration is designed to improve the anti-tumor effect of neutrophils by artificially potentiating their ROS effector mechanism in a remotely controlled route. Specifically, the photosensitizer Ce6 is nano-packaged by the albumin BSA to achieve biocompatible and efficient integration with neutrophils (NEs). Reinfusion of the engineered NEs into 4T1 tumor-bearing mice led to more Ce6 accumulation in tumors relative to Ce6 nanoformulation. At the peak of accumulation, tumor illumination activates the embedded Ce6 for ROS generation and NETosis formation. Because of the ROS-intensified cytolytic effect, the growth of 4T1 tumors is inhibited significantly. The photo-controlled process largely avoids the off-target effects observed frequently in current cell therapies. The strategy directly generates ROS effector molecules with spatiotemporal precision. This engineering approach is able to potentiate the native capacity of immune cells independent of the tumor microenvironment.


Subject(s)
Immunotherapy/methods , Neoplasms/drug therapy , Neutrophils/metabolism , Animals , Humans , Mice
14.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32240596

ABSTRACT

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Drug Delivery Systems , Forkhead Box Protein M1/administration & dosage , Forkhead Transcription Factors/administration & dosage , Hyperoxia/drug therapy , Nanoparticles , Pulmonary Alveoli/drug effects , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/therapeutic use , Animals , Animals, Newborn , Blotting, Western , Female , Flow Cytometry , Forkhead Box Protein M1/pharmacology , Forkhead Box Protein M1/therapeutic use , Forkhead Transcription Factors/pharmacology , Forkhead Transcription Factors/therapeutic use , Hyperoxia/pathology , Hyperoxia/physiopathology , Injections, Intravenous , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
15.
Theranostics ; 10(8): 3430-3450, 2020.
Article in English | MEDLINE | ID: mdl-32206100

ABSTRACT

Reactive oxygen species (ROS) play a crucial role in cancer formation and development, especially cancer metastasis. However, lack of a precise tool, which could accurately distinguish specific types of ROS, restricts an in-depth study of ROS in cancer development and progression. Herein, we designed smart and versatile fluorescent Ag nanoclusters (AgNCs) for sensitive and selective detection of different species of ROS in cells and tissues. Methods: Firstly, dual-emission fluorescent AgNCs was synthesized by using bovine serum albumin (BSA) to sense different types of ROS (H2O2, O2•-, •OH). The responsiveness of the AgNCs to different species of ROS was explored by fluorescence spectrum, hydrodynamic diameter, and so on. Furthermore, dual-emission fluorescent AgNCs was used to sense ROS in tumor with different degrees of differentiation. Finally, the relationship between specific types of ROS and tumor cell invasion was explored by cell migration ability and the expression of cell adhesion and EMT markers. Results: This dual-emission fluorescent AgNCs possessed an excellent ability to sensitively and selectively distinguish highly reactive oxygen species (hROS, including O2•-and •OH) from moderate reactive oxygen species (the form of H2O2), and exhibited no fluoresence and green fluorescence, respectively. The emission of AgNCs is effective in detecting cellular and tissular ROS. When cultured with AgNCs, malignant tumor cells exhibit non-fluorescence, while the benign tumor emits green and reduced red light and the normal cells appear in weak green and bright red fluorescence. We further verified that not just H2O2 but specific species of ROS (O2•-and •OH) were involved in cell invasion and malignant transformation. Our study warrants further research on the role of ROS in physiological and pathophysiological processes. Conclusion: Taken together, AgNCs would be a promising approach for sensing ROS, and offer an intelligent tool to detect different kinds of ROS in tumors.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Metal Nanoparticles , Neoplasms/diagnosis , Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Silver , Animals , Cell Line, Tumor , Humans , Mice , Neoplasms/pathology , Phenotype , Sensitivity and Specificity , Serum Albumin, Bovine , Spectrometry, Fluorescence
16.
ACS Appl Mater Interfaces ; 12(4): 4193-4203, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31935069

ABSTRACT

Isolation of circulating tumor cells (CTCs) in peripheral blood from cancer patients bears critical importance for evaluation of therapeutic efficacy. The current CTC isolation strategies are majorly relying on either protein biomarkers or dimensional features of CTCs. In this study, we present a new methodology for CTC detection and isolation based on the surface charge of cancer cells, a bioelectrical manifestation of the "Warburg effect." Negative surface charge is a direct consequence of glycolysis of cancer cells, which can be utilized as an effective biophysical marker for CTC detection and isolation. Upon cancer cells-nanoparticle interaction via optimum incubation, serum protein-coated electrically charged nanoparticles can trap different cancer cells independent of their epithelial protein expression. In fetal bovine serum , the poly(ethyleneimine)-functionalized Fe3O4 nanoparticles, surface-decorated with protein corona, are able to efficiently capture CTCs from blood samples of colorectal cancer patients.  2-8 CTCs has been isolated from 1 mL of blood and identified by immunostaining fluorescence in situ hybridization and immunofluorescence staining in all 25 colorectal cancer patients at varied stages, while only 0-1 CTC was detected from blood samples of 10 healthy donors. Diverse CTC subpopulations of heteroploids and biomarker expression can also be detected in this strategy. The label-free, charge-based CTC method shows promise in cancer diagnosis and prognosis paving a new path for liquid biopsy.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Separation , Magnetite Nanoparticles/chemistry , Neoplastic Cells, Circulating , Protein Corona/chemistry , HCT116 Cells , HeLa Cells , Humans , MCF-7 Cells , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology
17.
ACS Appl Mater Interfaces ; 12(3): 4163-4173, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31891476

ABSTRACT

Engineering of cell surfaces holds promise in manipulating cellular activities in a physicochemical route as a complement to the biological approach. Mediated by Ca2+, a quick and convenient yet cytocompatible method is used to achieve surface engineering, by which polydopamine nanostructures can be in situ grown onto dendritic cell (DC) surfaces within 10 min. Ca2+, as the physical bridge between the negative cell surface and polydopamine, avoids the direct chemical polymerization of polydopamine onto the cell surface, critically important to maintain the cell viability. As a proof of concept in potential applications, this cell surface engineering shows a good control toward DC maturation. Upon surface polydopamine engineering, bone-marrow-derived DC exhibits a unique bidirectional control of maturation. The polydopamine structure enables effective suppression of DC activation by acting as an efficient scavenger of reactive oxygen species, a key signal during maturation. Conversely, an 808 nm laser irradiation can remotely relieve the suppressed state and effectively activate DC maturation by the photoheat effect of polydopamine (39 °C). The work provides an easily implemented, straightforward approach to achieve cell surface engineering, through which the DC maturation can be controlled.


Subject(s)
Calcium/metabolism , Cell Engineering/methods , Dendritic Cells/cytology , Indoles/chemistry , Polymers/chemistry , Animals , Cell Differentiation , Cell Engineering/instrumentation , Cell Survival , Dendrites/metabolism , Dendritic Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Polymerization , Reactive Oxygen Species/metabolism
18.
Stress ; 23(1): 87-96, 2020 01.
Article in English | MEDLINE | ID: mdl-31311393

ABSTRACT

Psychological stress may be linked to cancer incidence; however, more direct evidence is required to support this viewpoint. In this study, we investigated the effects of stress on immunosurveillance against cancer cells using a previously established examination stress model. We showed that the cancer killing activity (CKA) of granulocytes (also known as polymorphic nuclear cells, PMNs) is sharply reduced during examination stress stimulation in some donors who are psychologically sensitive to examination stress, with the concentration of plasma stress hormones (cortisone, epinephrine, and norepinephrine) increasing accordingly. The effects of stress hormones on immune cell CKA were also investigated under two in vitro co-incubation conditions, with all three hormones found to exert inhibitory effects on the CKA of PMNs and mononuclear cells. We showed that stress triggered the release of stress hormones which had profound inhibitory effects on the innate anticancer functions of PMNs. These results provide a possible explanation for the relationship between psychological stress and cancer incidence.


Subject(s)
Granulocytes/physiology , Neoplasms/physiopathology , Stress, Psychological/complications , Stress, Psychological/physiopathology , Epinephrine/blood , Epinephrine/physiology , Humans , Hydrocortisone/blood , Hydrocortisone/physiology , Norepinephrine/blood , Norepinephrine/physiology
19.
ACS Appl Mater Interfaces ; 11(51): 47750-47761, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31773939

ABSTRACT

Remodeling of cellular surfaces is shown highly effective in the manipulation and control of cell behaviors via nonbiological means. By 5-thio-2-nitrobenzoate-mediated, fast, and reversible disulfide-thiol exchange, a sequential layer by layer assembly process was developed to grow albumin protein shells on cellular surfaces fixed by a disulfide-linked network, in a cytocompatible manner. The artificial shells, accomplished by a double-assembly process, were sustainable up to >1 day, and thereafter gradually bioabsorbed with unaffected cell viability. The surface engineering process enabled dynamic remodeling of cellular surfaces that effectively controlled cell behaviors including regulated cell proliferation, enhanced uptake efficiency of dextran-fluorescein isothiocyanate that is known for cell-impermeability, and targeted imaging. This unique approach was well-validated on tumor cells (B16), immune cells (DC2.4), and neutrophils, showing its potential universality for most of the cells that are rich in thiols. The new strategy will show promise in cell manipulation and targeted imaging.


Subject(s)
Disulfides/chemistry , Sulfhydryl Compounds/chemistry , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/physiology , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Neutrophils/cytology , Oxidation-Reduction
20.
Biomater Sci ; 7(12): 5238-5246, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31602440

ABSTRACT

Due to unsatisfactory tumor-targeting efficiency, hitch-hiking nanomedicines with tumor "smelling" immune cells have rapidly evolved to achieve a more precision delivery. However, the current research tends to default to the smelling capacity of neutrophils and largely overlooks the capacity of those immune cells that are heavily dependent on the pathogen exposure history of individuals. By avoiding risky strategies, such as altering the housing environment of mice for the improved activity of immune cells, we propose a new concept of nano-immunotraining strategy to quickly activate neutrophil tumor tropism and thereby give an enhanced tumor-targeting capacity. Such a strategy involves a facile construction of a vaccine-like nano-CpG adjuvant, followed by pre-immunizing on mice periodically to mimic the pathogen exposure. The results demonstrated that a significantly enhanced tumor-targeting accumulation of neutrophils harvested from nano-immunotrained mice could be achieved, either by intraperitoneal or intravenous injection. This easily accessed, reproducible, and biosafe nano-immunotraining strategy holds a great promise for more precision delivery of nanomedicines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Neoplasms/therapy , Neutrophils/metabolism , Oligodeoxyribonucleotides/administration & dosage , Adjuvants, Immunologic/chemistry , Animals , Cell Line, Tumor , Female , Immunization , Mice , Nanoparticles , Neoplasms/immunology , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...