Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Am J Bot ; 111(2): e16268, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050806

ABSTRACT

PREMISE: Fossil seeds recovered from the Early Cretaceous of Mongolia and Inner Mongolia, China, are described and assigned to Mongolitria gen. nov., a new genus of gymnosperm seed. METHODS: Abundant lignitized seeds along with compression specimens isolated from the matrix were studied using a combination of scanning electron microscopy, anatomical sectioning, light microscopy, synchrotron radiation X-ray microtomography, and cuticle preparations. A single permineralized seed was examined by light microscopy of cellulose acetate peels and X-ray microtomography. RESULTS: Two species are recognized, Mongolitria friisae sp. nov. and Mongolitria exesum sp. nov. Both seeds are orthotropous with a short apical micropyle and a small, basal, circular attachment scar. The thick sclerenchymatous integument has a consistently three-parted organization and about 20 conspicuous longitudinal ribs on the surface. Mongolitria exesum differs from M. friisae primarily in its much larger size and thicker seed coat, which also preserves clear evidence of insect damage. CONCLUSIONS: Mongolitria is similar to other fossil seeds that have been assigned to Cycadales, but displays a unique combination of characters not found in any living or extinct cycadaceous plant, leaving its higher-level systematic affinities uncertain. Germination apparently involved splitting of the integument into three valves. Mongolitria was prominent among the plant parts accumulating in peat swamps in eastern Asia during the Early Cretaceous.


Subject(s)
Biological Evolution , Seeds , Microscopy, Electron, Scanning , China , Cycadopsida , Fossils , Phylogeny
2.
New Phytol ; 233(5): 2310-2322, 2022 03.
Article in English | MEDLINE | ID: mdl-34981832

ABSTRACT

Lycopodiaceae are one of three surviving families of lycopsids, a lineage of vascular plants with a fossil history dating to at least the Early Devonian or perhaps the Late Silurian (c. 415 Ma). Many fossils have been linked to crown Lycopodiaceae, but the lack of well-preserved material has hindered definitive recognition of this group in the paleobotanical record. New, exceptionally well-preserved permineralized lycopsid fossils from the Early Cretaceous (125.6 ± 1.0 Ma) of Inner Mongolia, China, were examined in detail using acetate peel and micro-computed tomography techniques. The anatomy of extant Lycopodiaceae was analyzed for comparison using fluorescence microscopy. Phylogenetic relationships of the new fossil to extant Lycopodiaceae were evaluated using parsimony and maximum likelihood analyses. Lycopodicaulis oellgaardii gen. et sp. nov. provides the earliest unequivocal and best-documented evidence of crown Lycopodiaceae and Lycopodioideae, based on anatomically-preserved fossil material. Recognition of Lycopodicaulis in Asia during the Early Cretaceous indicates the presence of crown Lycopodiaceae at this time, and striking similarities of stem anatomy with extant species provide a framework for the understanding of the interaction of branching and vascular anatomy in crown-group lycopsids.


Subject(s)
Fossils , Lycopodiaceae , Phylogeny , Biological Evolution , China , Lycopodiaceae/classification , X-Ray Microtomography
3.
Natl Sci Rev ; 8(1): nwaa091, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34691550

ABSTRACT

The often-used phrase 'the uplift of the Tibetan Plateau' implies a flat-surfaced Tibet rose as a coherent entity, and that uplift was driven entirely by the collision and northward movement of India. Here, we argue that these are misconceptions derived in large part from simplistic geodynamic and climate modeling, as well as proxy misinterpretation. The growth of Tibet was a complex process involving mostly Mesozoic collisions of several Gondwanan terranes with Asia, thickening the crust and generating complex relief before the arrival of India. In this review, Earth system modeling, paleoaltimetry proxies and fossil finds contribute to a new synthetic view of the topographic evolution of Tibet. A notable feature overlooked in previous models of plateau formation was the persistence through much of the Cenozoic of a wide east-west orientated deep central valley, and the formation of a plateau occurred only in the late Neogene through compression and internal sedimentation.

4.
Am J Bot ; 108(8): 1483-1499, 2021 08.
Article in English | MEDLINE | ID: mdl-34458982

ABSTRACT

PREMISE: Seed cones of extant Pinaceae exhibit two mechanisms of seed release. In "flexers" the cone scales remain attached to the central axis, while flexing and separating from each other to release the seeds. In "shedders" scales are shed from the axis, with the seeds either remaining attached to the scale or becoming detached. The early fossil history of Pinaceae from the Jurassic to Early Cretaceous is dominated by flexing seed cones, while the systematic information provided by shedding fossil cones has been overlooked and rarely integrated with data based on compression and permineralized specimens. We describe the earliest and best-documented evidence of a "shedder" seed cone from the Aptian-Albian of Mongolia. METHODS: Lignite samples from Tevshiin Govi locality were disaggregated in water, washed, and dried in air. Fossils were compared to material of extant Pinaceae using LM and CT scans. RESULTS: Lepidocasus mellonae gen. et sp. nov. is characterized by a seed cone that disarticulated at maturity and shed obovate bract-scale complexes that have a distinctive ribbed surface and an abaxial surface covered with abundant trichomes. The ovuliferous scale has ca. 30-40 resin canals, but only scarce xylem near the attachment to the cone axis. Resin vesicles are present in the seed integument. Phylogenetic analysis places Lepidocasus as sister to extant Cedrus within the abietoid grade. CONCLUSIONS: The exquisite preservation of the trichomes in L. mellonae raises questions about their potential ecological function in the cones of fossil and living Pinaceae. Lepidocasus mellonae also shows that a shedding dispersal syndrome, a feature that has often been overlooked, evolved early in the history of Pinaceae during the Early Cretaceous.


Subject(s)
Pinaceae , Fossils , Mongolia , Phylogeny , Seeds
5.
Nature ; 594(7862): 223-226, 2021 06.
Article in English | MEDLINE | ID: mdl-34040260

ABSTRACT

The second integument of the angiosperm ovule is unique among seed plants, with developmental genetics that are distinct from those of the inner integument1. Understanding how the second integument should be compared to structures in other seed plants is therefore crucial to resolving the long-standing question of the origin of angiosperms2-6. Attention has focused on several extinct plants with recurved cupules that are reminiscent of the anatropous organization of the basic bitegmic ovules of angiosperms1-6, but interpretations have been hampered by inadequate information on the relevant fossils. Here we describe abundant exceptionally well-preserved recurved cupules from a newly discovered silicified peat dating to the Early Cretaceous epoch (around 125.6 million years ago) in Inner Mongolia, China. The new material, combined with re-examination of potentially related fossils, indicates that the recurved cupules of several groups of Mesozoic plants are all fundamentally comparable, and that their structure is consistent with the recurved form and development of the second integument in the bitegmic anatropous ovules of angiosperms. Recognition of these angiosperm relatives (angiophytes) provides a partial answer to the question of angiosperm origins, will help to focus future work on seed plant phylogenetics and has important implications for ideas on the origin of the angiosperm carpel.


Subject(s)
Biological Evolution , Extinction, Biological , Fossils , Integumentary System/anatomy & histology , Magnoliopsida/anatomy & histology , Ovule/anatomy & histology , China , History, Ancient , Magnoliopsida/ultrastructure , Mongolia , Ovule/ultrastructure , Phylogeny
6.
Sci Adv ; 7(18)2021 04.
Article in English | MEDLINE | ID: mdl-33931457

ABSTRACT

During the Mid-Miocene Climatic Optimum [MMCO, ~14 to 17 million years (Ma) ago], global temperatures were similar to predicted temperatures for the coming century. Limited megathermal paleoclimatic and fossil data are known from this period, despite its potential as an analog for future climate conditions. Here, we report a rich middle Miocene rainforest biome, the Zhangpu biota (~14.7 Ma ago), based on material preserved in amber and associated sedimentary rocks from southeastern China. The record shows that the mid-Miocene rainforest reached at least 24.2°N and was more widespread than previously estimated. Our results not only highlight the role of tropical rainforests acting as evolutionary museums for biodiversity at the generic level but also suggest that the MMCO probably strongly shaped the East Asian biota via the northern expansion of the megathermal rainforest biome. The Zhangpu biota provides an ideal snapshot for biodiversity redistribution during global warming.

7.
PLoS One ; 15(1): e0226779, 2020.
Article in English | MEDLINE | ID: mdl-31940374

ABSTRACT

Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides-Podozamites schenkii, and Cycadocarpidium erdmanni-Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.


Subject(s)
Tracheophyta/anatomy & histology , Phylogeny , Plant Leaves/anatomy & histology , Seeds/anatomy & histology , Terminology as Topic , Tracheophyta/classification
9.
Curr Biol ; 28(9): 1475-1481.e1, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29706517

ABSTRACT

Camouflage and mimicry are staples among predator-prey interactions, and evolutionary novelties in behavior, anatomy, and physiology that permit such mimesis are rife throughout the biological world [1, 2]. These specializations allow for prey to better evade capture or permit predators to more easily approach their prey, or in some cases, the mimesis can serve both purposes. Despite the importance of mimesis and camouflage in predator-avoidance or hunting strategies, the long-term history of these traits is often obscured by an insufficient fossil record. Here, we report the discovery of Upper Cretaceous (approximately 100 million years old) green lacewing larvae (Chrysopoidea), preserved in amber from northern Myanmar, anatomically modified to mimic coeval liverworts. Chrysopidae are a diverse lineage of lacewings whose larvae usually camouflage themselves with a uniquely constructed packet of exogenous debris, conveying greater stealth upon them as they hunt prey such as aphids as well as evade their own predators [3, 4]. However, no lacewing larvae today mimic their surroundings. While the anatomy of Phyllochrysa huangi gen. et sp. nov. allowed it to avoid detection, the lack of setae or other anatomical elements for entangling debris as camouflage means its sole defense was its mimicry, and it could have been a stealthy hunter like living and other fossil Chrysopoidea or been an ambush predator aided by its disguise. The present fossils demonstrate a hitherto unknown life-history strategy among these "wolf in sheep's clothing" predators, one that apparently evolved from a camouflaging ancestor but did not persist within the lineage.


Subject(s)
Biological Mimicry/physiology , Fossils/anatomy & histology , Insecta/physiology , Amber , Animals , Behavior, Animal , Biological Evolution , Hepatophyta , Larva/physiology , Life History Traits , Myanmar
10.
Sci Rep ; 7(1): 878, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28408764

ABSTRACT

Understanding the Tibetan Plateau's palaeogeography and palaeoenvironment is critical for reconstructing Asia's climatic history; however, aspects of the plateau's uplift history remain unclear. Here, we report a fossil biota that sheds new light on these issues. It comprises a fossil climbing perch (Anabantidae) and a diverse subtropical fossil flora from the Chattian (late Oligocene) of central Tibet. The fish, Eoanabas thibetana gen. et sp. nov., is inferred to be closely related to extant climbing perches from tropical lowlands in south Asia and sub-Saharan Africa. It has osteological correlates of a labyrinth organ, which in extant climbing perches gives them the ability to breathe air to survive warm, oxygen-poor stagnant waters or overland excursion under moist condition. This indicates that Eoanabas likewise lived in a warm and humid environment as suggested by the co-existing plant assemblage including palms and golden rain trees among others. As a palaeoaltimeter, this fossil biota suggests an elevation of ca. 1,000 m. These inferences conflict with conclusions of a high and dry Tibet claimed by some recent and influential palaeoaltimetry studies. Our discovery prompts critical re-evaluation of prevailing uplift models of the plateau and their temporal relationships with the Cenozoic climatic changes.


Subject(s)
Perches/anatomy & histology , Perches/classification , Plants/anatomy & histology , Plants/classification , Africa South of the Sahara , Animals , Climate , Fossils , Phylogeography , Plant Leaves/anatomy & histology , Tibet
11.
Proc Natl Acad Sci U S A ; 114(12): E2385-E2391, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265050

ABSTRACT

The origins of the five groups of living seed plants, including the single relictual species Ginkgo biloba, are poorly understood, in large part because of very imperfect knowledge of extinct seed plant diversity. Here we describe well-preserved material from the Early Cretaceous of Mongolia of the previously enigmatic Mesozoic seed plant reproductive structure Umaltolepis, which has been presumed to be a ginkgophyte. Abundant new material shows that Umaltolepis is a seed-bearing cupule that was borne on a stalk at the tip of a short shoot. Each cupule is umbrella-like with a central column that bears a thick, resinous, four-lobed outer covering, which opens from below. Four, pendulous, winged seeds are attached to the upper part of the column and are enclosed by the cupule. Evidence from morphology, anatomy, and field association suggests that the short shoots bore simple, elongate Pseudotorellia leaves that have similar venation and resin ducts to leaves of living GinkgoUmaltolepis seed-bearing structures are very different from those of Ginkgo but very similar to fossils described previously as Vladimaria. Umaltolepis and Vladimaria do not closely resemble the seed-bearing structures of any living or extinct plant, but are comparable in some respects to those of certain Peltaspermales and Umkomasiales (corystosperms). Vegetative similarities of the Umaltolepis plant to Ginkgo, and reproductive similarities to extinct peltasperms and corystosperms, support previous ideas that Ginkgo may be the last survivor of a once highly diverse group of extinct plants, several of which exhibited various degrees of ovule enclosure.


Subject(s)
Ginkgo biloba/anatomy & histology , Plants/anatomy & histology , Seeds/anatomy & histology , Fossils/anatomy & histology , Ginkgo biloba/classification , Plants/classification , Seeds/classification
12.
Am J Bot ; 104(9): 1370-1381, 2017 09.
Article in English | MEDLINE | ID: mdl-29885232

ABSTRACT

PREMISE OF THE STUDY: Hymenophyllaceae ("filmy ferns") are a widely distributed group of predominantly tropical, epiphytic ferns that also include some temperate and terrestrial species. Hymenophyllaceae are one of the earliest-diverging lineages within leptosporangiate ferns, but their fossil record is sparse, most likely because of their low fossilization potential and commonly poor preservation of their delicate, membranaceous fronds. A new species of unequivocal fossil Hymenophyllaceae, Hymenophyllum iwatsukii sp. nov., is described from the Early Cretaceous of Mongolia based on abundant and exceptionally well-preserved material. METHODS: Bulk lignite samples collected from Tevshiin Govi and Tugrug localities in Mongolia, were disaggregated in water, cleaned with hydrochloric and hydrofluoric acids, washed, and dried in air. Fossils were examined and compared to material of extant Hymenophyllaceae using LM and SEM. KEY RESULTS: The fossil fern specimens are assigned to the Hymenophyllaceae based on their membranaceous laminae with marginal sori that have sessile to short-stalked sporangia with oblique, complete annuli, and trilete, tetrahedral-globose spores. Within the family, the fossil material is assigned to the extant genus Hymenophyllum on the basis of bivalvate indusia and short, included receptacles. CONCLUSIONS: Hymenophyllum iwatsukii was likely an epiphyte based on the sedimentary environment in which the fossils are preserved, the associated fossil flora, and the growth habit of extant species of Hymenophyllum. The new fossil species underlines the extent to which morphological characters in Hymenophyllum have been conserved despite significant tectonic, climatic, ecological, and floristic changes since the Early Cretaceous.


Subject(s)
Ferns/ultrastructure , Fossils/anatomy & histology
13.
Sci Adv ; 2(6): e1501918, 2016 06.
Article in English | MEDLINE | ID: mdl-27386568

ABSTRACT

Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.


Subject(s)
Adaptation, Physiological , Behavior, Animal , Biological Evolution , Biological Mimicry , Insecta , Amber , Animals , Fossils , Larva , Paleontology
14.
New Phytol ; 210(4): 1418-29, 2016 06.
Article in English | MEDLINE | ID: mdl-26840646

ABSTRACT

Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed.


Subject(s)
Ferns/anatomy & histology , Fossils/anatomy & histology , Mongolia , Ovule/anatomy & histology , Plant Leaves/anatomy & histology , Seeds/anatomy & histology
15.
BMC Evol Biol ; 15: 252, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26572133

ABSTRACT

BACKGROUND: Morphological and molecular phylogenetic studies suggest that the pantropical genus Bauhinia L. s.l. (Bauhiniinae, Cercideae, Leguminosae) is paraphyletic and may as well be subdivided into nine genera, including Bauhinia L. s.s. and its allies. Their leaves are usually characteristic bilobate and are thus easily recognized in the fossil record. This provides the opportunity to understand the early evolution, diversification, and biogeographic history of orchid trees from an historical perspective under the framework of morphological and molecular studies. RESULTS: The taxonomy, distribution, and leaf architecture of Bauhinia and its allies across the world are summarized in detail, which formed the basis for classifying the bilobate leaf fossils and evaluating the fossil record and biogeography of Bauhinia. Two species of Bauhinia are described from the middle Miocene Fotan Group of Fujian Province, southeastern China. Bauhinia ungulatoides sp. nov. is characterized by shallowly to moderately bilobate, pulvinate leaves with shallowly cordate bases and acute apices on each lobe, as well as paracytic stomatal complexes. Bauhinia fotana F.M.B. Jacques et al. emend. possesses moderately bilobate, pulvinate leaves with moderately to deeply cordate bases and acute or slightly obtuse apices on each lobe. CONCLUSIONS: Bilobate leaf fossils Bauhinia ungulatoides and B. fotana together with other late Paleogene - early Neogene Chinese record of the genus suggest that Bauhinia had been diverse in South China by the late Paleogene. Their great similarities to some species from South America and South Asia respectively imply that Bauhinia might have undergone extensive dispersals and diversification during or before the Miocene. The fossil record, extant species diversity, as well as molecular phylogenetic analyses demonstrate that the Bauhiniinae might have originated in the Paleogene of low-latitudes along the eastern Tethys Seaway. They dispersed southwards into Africa, migrated from Eurasia to North America via the North Atlantic Land Bridge or floating islands during the Oligocene. Then the genus spread into South America probably via the Isthmus of Panama since the Miocene onward, and underwent regional extinctions in the Boreotropics of mid-high-latitudes during the Neogene climatic cooling. Hence, Bauhinia presently exhibits a pantropical intercontinental disjunct distribution.


Subject(s)
Bauhinia/anatomy & histology , Biological Evolution , Fossils , Plant Leaves/anatomy & histology , Bauhinia/genetics , China , Fabaceae , Phylogeny
16.
PLoS One ; 9(10): e111303, 2014.
Article in English | MEDLINE | ID: mdl-25354364

ABSTRACT

The terpenoid compositions of the Late Cretaceous Xixia amber from Central China and the middle Miocene Zhangpu amber from Southeast China were analyzed by gas chromatography-mass spectrometry (GC-MS) to elucidate their botanical origins. The Xixia amber is characterized by sesquiterpenoids, abietane and phyllocladane type diterpenoids, but lacks phenolic abietanes and labdane derivatives. The molecular compositions indicate that the Xixia amber is most likely contributed by the conifer family Araucariaceae, which is today distributed primarily in the Southern Hemisphere, but widely occurred in the Northern Hemisphere during the Mesozoic according to paleobotanical evidence. The middle Miocene Zhangpu amber is characterized by amyrin and amyrone-based triterpenoids and cadalene-based sesquiterpenoids. It is considered derived from the tropical angiosperm family Dipterocarpaceae based on these compounds and the co-occurring fossil winged fruits of the family in Zhangpu. This provides new evidence for the occurrence of a dipterocarp forest in the middle Miocene of Southeast China. It is the first detailed biomarker study for amber from East Asia.


Subject(s)
Amber/chemistry , Sesquiterpenes/analysis , Triterpenes/analysis , Fossils
17.
Curr Biol ; 24(14): 1606-1610, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25017209

ABSTRACT

Paleogene arthropod biotas have proved important for tracing the faunal turnover and intercontinental faunal interchange driven by climatic warming and geodynamic events [1-5]. Despite the large number of Paleogene fossil arthropods in Europe and North America [5-8], little is known about the typical Asian (Laurasia-originated) arthropod biota. Here, we report a unique amber biota (50-53 million years ago) from the Lower Eocene of Fushun in northeastern China, which fills a large biogeographic gap in Eurasia. Fushun amber is derived from cupressaceous trees, as determined by gas chromatography-mass spectrometry, infrared spectroscopy, and paleobotanical observations. Twenty-two orders and more than 80 families of arthropods have been reported so far, making it among the most diverse amber biotas. Our results reveal that an apparent radiation of ecological keystone insects, including eusocial, phytophagous, and parasitoid lineages, occurred at least during the Early Eocene Climatic Optimum. Some insect taxa have close phylogenetic affinities to those from coeval European ambers, showing a biotic interchange between the eastern and western margins of the Eurasian landmass during the Early Paleogene.


Subject(s)
Amber , Arthropods/classification , Biota , Fossils , Animals , Biodiversity , China , Phylogeny
18.
Am J Bot ; 99(1): 108-20, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22223689

ABSTRACT

PREMISE OF THE STUDY: Calocedrus is among the genera with a typical eastern Asian-western North American disjunct distribution today. The origin of its modern distribution pattern can be better understood by examining its fossil record. METHODS: The present article reports for the first time a new fossil species of this genus based on compressed material from the Oligocene Ningming Formation of Guangxi, South China, in its present major distribution area in eastern Asia. KEY RESULTS: Calocedrus huashanensis sp. nov. is most similar to the two extant eastern Asian species, C. macrolepis and C. formosana, in gross morphology of foliage shoots and bears a close resemblance to the latter in cuticle structure. It shows a general similarity to the North American fossil representatives of the genus in alternately branched foliage shoots but is clearly different from the European Paleogene species characterized by oppositely branched leafy shoots. CONCLUSIONS: This discovery provides new evidence for the floristic exchange of this genus between eastern Asia and North America before the Oligocene (most likely in the Eocene), presumably via the Bering land bridge. The flattened leafy shoots and dimorphic leaves with thin cuticle, open stomatal pits, and shallowly sunken guard cells of the present fossils suggest a rather humid climate during the Oligocene in the Ningming area, South China.


Subject(s)
Biological Evolution , Cupressaceae/genetics , Fossils , China , Climate , Cupressaceae/anatomy & histology , Geography , North America , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Shoots/anatomy & histology , Plant Shoots/genetics , Plant Stomata/anatomy & histology , Plant Stomata/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...