Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686574

ABSTRACT

TNFR1 and TNFR2, encoded by TNFRSF1A and TNFRSF1B, respectively, are the most well-characterized members among the TNFR superfamily. TNFR1 is expressed in most cell types, while TNFR2 has been reported to be preferentially expressed in leukocytes. Lung cancer remains the leading cause of cancer mortality worldwide but TNFRs' activities in lung cancer development have not been fully evaluated. Recently, overexpressed TNFR1 was reported in a large proportion of human lung squamous cell carcinomas. Increased TNFR1 coupled with increased UBCH10 caused lung SCC cell dedifferentiation with epithelial-mesenchymal transition features and the metastasis in a combined spontaneous lung SCC and TNFR1 transgenic mouse model. UBCH10, an E2 ubiquitin-conjugating enzyme that is an oncogene, increased Sox2, c-Myc, Twist1, and Bcl2 levels. Increased TNFR1 upregulated UBCH10 expression by activating c-Rel and p65 NF-κB. Lung SCC patients overexpressing TNFRSF1A and one of these target genes died early compared to lung SCC patients expressing lower levels of these genes. Recently, we also revealed that TNFR2 was required for lung adenocarcinoma progression, delivering a signaling pathway of TNF/TNFR2/NF-κB-c-Rel, in which macrophage-produced ROS and TNF converted CD4 T cells to Foxp3 Treg cells, generating an immunosuppressive tumor microenvironment and promoting lung ADC progression. In human lung ADC cohorts, TNFRSF1B expression was highly correlated with TNF, FOXP3, and CD4 expression. Of note, TNF stimulated the activities of TNFR1 and TNFR2, two membrane-binding receptors, which accelerate tumorigenesis through diverse mechanisms. This review focuses on these new findings regarding the roles of TNFR1 and TNFR2 in lung SCC and ADC development in humans and mice, and highlights the potential therapeutic targets of human lung cancers.

2.
Cell Death Dis ; 13(10): 885, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36270982

ABSTRACT

Tumor necrosis factor receptor 1 (TNFR1), encoded by TNFRSF1A, is a critical transducer of inflammatory pathways, but its physiological role in human cancer is not completely understood. Here, we observed high expression of TNFR1 in many human lung squamous cell carcinoma (SCCs) samples and in spontaneous lung SCCs derived from kinase-dead Ikkα knock-in (KA/KA) mice. Knocking out Tnfrf1a in KA/KA mice blocked lung SCC formation. When injected via tail vein, KALLU+ lung SCC cells that highly expressed TNFR1/TNF, Sox2, c-Myc, Twist1, Bcl2, and UBCH10, generated dedifferentiated spindle cell carcinomas with epithelial-mesenchymal transition markers in mouse lungs. In contrast, KALLU+ cells with silenced TNFR1 and KALLU- cells that expressed low levels of TNFR1 generated well-differentiated lung SCCs and were less tumorigenic and metastatic. We identified a downstream effector of TNFR1: oncogenic UBCH10, an E2 ubiquitin-conjugating enzyme with targets including Twist1, c-Myc, and Sox2, which enhanced SCC cell dedifferentiation. Furthermore, Tg-K5.TNFR1;KA/KA mice, which expressed transgenic TNFR1 in keratin 5-positve epithelial cells, developed more poorly differentiated and metastatic lung SCCs than those found in KA/KA mice. These findings demonstrate that an overexpressed TNFR1-UBCH10 axis advances lung carcinogenesis and metastasis through a dedifferentiation mechanism. Constituents in this pathway may contribute to the development of differentiation-related therapies for lung SCC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Mice , Animals , I-kappa B Kinase/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Keratin-5 , Receptors, Tumor Necrosis Factor, Type I , Carcinoma, Squamous Cell/metabolism , Carcinogenesis , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2 , Lung/metabolism
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35121655

ABSTRACT

The tumor microenvironment (TME) provides potential targets for cancer therapy. However, how signals originating in cancer cells affect tumor-directed immunity is largely unknown. Deletions in the CHUK locus, coding for IκB kinase α (IKKα), correlate with reduced lung adenocarcinoma (ADC) patient survival and promote KrasG12D-initiated ADC development in mice, but it is unknown how reduced IKKα expression affects the TME. Here, we report that low IKKα expression in human and mouse lung ADC cells correlates with increased monocyte-derived macrophage and regulatory T cell (Treg) scores and elevated transcription of genes coding for macrophage-recruiting and Treg-inducing cytokines (CSF1, CCL22, TNF, and IL-23A). By stimulating recruitment of monocyte-derived macrophages from the bone marrow and enforcing a TNF/TNFR2/c-Rel signaling cascade that stimulates Treg generation, these cytokines promote lung ADC progression. Depletion of TNFR2, c-Rel, or TNF in CD4+ T cells or monocyte-derived macrophages dampens Treg generation and lung tumorigenesis. Treg depletion also attenuates carcinogenesis. In conclusion, reduced cancer cell IKKα activity enhances formation of a protumorigenic TME through a pathway whose constituents may serve as therapeutic targets for KRAS-initiated lung ADC.


Subject(s)
Adenocarcinoma of Lung/immunology , Cytokines/immunology , I-kappa B Kinase/immunology , Lung Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Transformation, Neoplastic/immunology , Humans , Immunosuppression Therapy/methods , Macrophages/immunology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Signal Transduction/immunology
5.
Cell Death Discov ; 4: 46, 2018.
Article in English | MEDLINE | ID: mdl-29844930

ABSTRACT

Human lung squamous cell carcinoma (SCC) is highly associated with increased pulmonary macrophage infiltration. Previously, we showed that marked pulmonary infiltrating macrophages were required for spontaneous lung SCC development in a mouse model (L-IkkαKA/KA , KA/KA) that resembles human lung SCC. Interestingly the lung SCC-associated macrophages specifically express elevated inducible nitric oxide synthase (NOS2). However, the role of macrophage NOS2 in lung carcinogenesis has not been explored. Here, we show that NOS2 ablation inhibits macrophage infiltration, fibrosis, and SCC development in the lungs of KA/KA mice. Macrophage NOS2 was found to circulate inflammation and enhance macrophage migration and survival. NOS2 promotes foamy macrophage formation characterized with impaired lipid metabolism. NOS2 null bone marrow transplantation reduces foamy macrophage numbers and carcinogenesis in KA/KA chimaeras. This finding sheds light on a new mechanism by which macrophage NOS2 increases pulmonary inflammatory responses and macrophage survival and impairs macrophage lipid metabolism, thereby promoting lung SCC formation.

6.
Oncotarget ; 7(50): 82158-82169, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27058625

ABSTRACT

The membrane-anchored glycoprotein RECK negatively regulates multiple metalloproteinases and is frequently downregulated in tumors. Forced RECK expression in cancer cells results in suppression of tumor angiogenesis, invasion, and metastasis in xenograft models. A previous methylome study on breast cancer tissues detected inverse correlation between RECK CpG methylation (in an intron-1 region) and relapse-free survival. In this study, we focused on another region of the RECK CpG island (a promoter/exon-1 region) and found an inverse correlation between its methylation and RECK-inducibility by an HDAC inhibitor, MS275, among a panel of breast cancer cell lines (n=15). In clinical samples (n=62), RECK intron-1 methylation was prevalent among luminal breast cancers as reported previously (26 of 38 cases; 68%) and particularly enriched in tumors of the ER+PR- subclass (10 of 10 cases) and of higher histological grades (Grade 2 and 3; 28 of 43 cases; P=0.006). In about a half of these cases, promoter/exon-1 methylation was absent, and hence, RECK may be inducible by certain drugs such as MS275. Our results indicate the value of combined use of two RECK methylation markers for predicting prognosis and drug-sensitivity of breast cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic , GPI-Linked Proteins/genetics , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Benzamides/pharmacology , Breast Neoplasms/pathology , DNA Methylation/drug effects , Decitabine , Dose-Response Relationship, Drug , Epigenesis, Genetic/drug effects , Exons , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , MCF-7 Cells , Methotrexate/pharmacology , Middle Aged , Neoplasm Grading , Neoplasm Staging , Promoter Regions, Genetic , Pyridines/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...