Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 356: 120533, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492422

ABSTRACT

This paper examines the impact of air pollution control policies targeting key polluting enterprises, highlighting a strategic shift towards precision pollution control that concentrates on high-emission, high-risk businesses. The paper explores the efficacy of these policies and their potential spatial spillover effects, utilizing panel data from 259 Chinese cities from 2013 to 2021. Employing the difference-in-differences (DID) model and spatial Durbin model, the study analyzes both the direct local effects and the broader spatial consequences of these regulatory measures on air quality. The findings indicate a significant reduction in air pollutant concentrations in urban areas, attributing this improvement to factors such as industrial restructuring, increased investment in science and technology, and economic growth. Spatial econometric analysis further reveals a substantial positive correlation in air quality among Chinese cities. However, estimates of the spillover effect indicate that while such policies successfully reduce pollution locally, they could unintentionally degrade air quality in adjacent areas. The study highlights the need for nuanced policy strategies to mitigate unintended spatial spillovers and enhance overall effectiveness. It recommends tailored policies that integrate environmental and socioeconomic objectives, national and regional coordination for consistent enforcement, technology-driven compliance strategies, and incentives for sustainable enterprise practices.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollution/prevention & control , Environmental Pollution/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/analysis , Cities , Policy , Economic Development , China
2.
PLoS One ; 9(6): e99634, 2014.
Article in English | MEDLINE | ID: mdl-24936978

ABSTRACT

As function units, network motifs have been detected to reveal evolutionary mechanisms of complex systems, such as biological networks, food webs, engineering networks and social networks. However, emergence of motifs in growing networks may be problematic due to large fluctuation of subgraph frequency in the initial stage. This paper contributes to present a method which can identify the emergence of motif in growing networks. Based on the Erdös-Rényi(E-R) random null model, the variation rate of expected frequency of subgraph at adjacent time points was used to define the suitable detection range for motif identification. Upper and lower boundaries of the range were obtained in analytical form according to a chosen risk level. Then, the statistical metric Z-score was extended to a new one, Z(continuous), which effectively reveals the statistical significance of subgraph in a continuous period of time. In this paper, a novel research framework of motif identification was proposed, defining critical boundaries for the evolutionary process of networks and a significance metric of time scale. Finally, an industrial ecosystem at Kalundborg was adopted as a case study to illustrate the effectiveness and convenience of the proposed methodology.


Subject(s)
Computer Simulation , Algorithms , Humans , Industry
SELECTION OF CITATIONS
SEARCH DETAIL