Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Histol Histopathol ; 36(5): 535-545, 2021 May.
Article in English | MEDLINE | ID: mdl-33570156

ABSTRACT

OBJECTIVE: To investigate the effect of the downregulation of FXYD domain-containing ion transport regulator 5 (FXYD5) on the cisplatin resistance (CisR) of epithelial ovarian cancer (EOC) cells. METHODS: A2780-CisR and SKOV3-CisR cells were obtained through repeated administrations of different cisplatin concentrations, and the half-maximal inhibition concentration (IC50) was calculated by MTT assays. After transfection with FXYD5 siRNA-1 and FXYD5 siRNA-2, the IC50 values of the A2780-CisR and SKOV3-CisR cells were also detected by the MTT method. Cell proliferation, migration, invasion and apoptosis were evaluated through 5-ethynyl-2'-deoxyuridine (EdU) DNA synthesis, wound healing, Transwell invasion and Annexin-V-FITC/PI dual-staining assays, respectively. qRT-PCR and Western blotting were conducted to detect mRNA and protein expression. RESULTS: Compared with the sensitive parental cells, the A2780-CisR and SKOV3-CisR cells had increased IC50 and FXYD5 expression. FXYD5 siRNA reduced the IC50 value of cisplatin in the A2780-CisR and SKOV3-CisR cells and decreased the expression of ABCG2 (BCRP) and ABCB1 (MDR1). In addition, FXYD5 inhibition reduced the invasion and migration of the A2780-CisR and SKOV3-CisR cells, with upregulation of E-cadherin and downregulation of Snail and Vimentin. Both FXYD5 siRNA-1 and FXYD5 siRNA-2 inhibited the proliferation and promoted the apoptosis of the A2780-CisR and SKOV3-CisR cells with reduced Ki-67 and increased caspase-3. CONCLUSION: FXYD5 downregulation may reduce the invasion, migration and EMT formation of EOC cells to increase their sensitivity to cisplatin chemotherapy by inhibiting cell proliferation and promoting cell apoptosis.


Subject(s)
Carcinoma, Ovarian Epithelial , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Ion Channels , Microfilament Proteins , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cadherins/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ion Channels/genetics , Ion Channels/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Snail Family Transcription Factors/metabolism , Vimentin/metabolism
2.
Hypertension ; 76(4): 1219-1230, 2020 10.
Article in English | MEDLINE | ID: mdl-32862709

ABSTRACT

Pathological cardiac hypertrophy is one of the major predictors and inducers of heart failure, the end stage of various cardiovascular diseases. However, the molecular mechanisms underlying pathogenesis of pathological cardiac hypertrophy remain largely unknown. Here, we provided the first evidence that STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) is a key negative regulator of this disease. We found that the expression of STEAP3 was reduced in pressure overload-induced hypertrophic hearts and phenylephrine-induced hypertrophic cardiomyocytes. In a transverse aortic constriction-triggered mouse cardiac hypertrophy model, STEAP3 deficiency remarkably deteriorated cardiac hypertrophy and fibrosis, whereas the opposite phenotype was observed in the cardiomyocyte-specific STEAP3 overexpressing mice. Accordingly, STEAP3 significantly mitigated phenylephrine-induced cell enlargement in primary neonatal rat cardiomyocytes. Mechanistically, via RNA-seq and immunoprecipitation-mass screening, we demonstrated that STEAP3 directly bond to Rho family small GTPase 1 and suppressed the activation of downstream mitogen-activated protein kinase-extracellular signal-regulated kinase signaling cascade. Remarkably, the antihypertrophic effect of STEAP3 was largely blocked by overexpression of constitutively active mutant Rac1 (G12V). Our study indicates that STEAP3 serves as a novel negative regulator of pathological cardiac hypertrophy by blocking the activation of the Rac1-dependent signaling cascade and may contribute to exploring effective therapeutic strategies of pathological cardiac hypertrophy treatment.


Subject(s)
Cardiomegaly/metabolism , Cell Cycle Proteins/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Oxidoreductases/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Cell Cycle Proteins/genetics , Disease Models, Animal , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Heart Failure/genetics , Heart Failure/pathology , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Oxidoreductases/genetics , Rats
3.
Exp Ther Med ; 19(1): 99-106, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31853278

ABSTRACT

The aim of the present study was to observe the effect of Rho-kinase on remote ischemic post-conditioning (RIPostC) and explore the underlying mechanisms. Male Sprague Dawley rats (n=32) were randomly distributed into four groups: Sham group, ischemia/reperfusion (I/R) group, RIPostC group and I/R with fasudil group (I/R+Fas). Infarction size was detected by triphenyltetrazolium chloride staining. The levels of creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) and cardiac troponin I (cTnI) were measured using an ultraviolet spectrophotometer. The mRNA expression levels of Rho-associated coiled-coil containing protein kinase (ROCK)-1 and ROCK2, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected via reverse transcription-PCR. The protein expression levels of phosphorylated-myosin phosphatase target subunit (p-MYPT1) and phosphorylated-myosin light chain (p-MLC) were assessed by western blotting. The results demonstrated that RIPostC could decrease the infarct size, the levels of CK, LDH, cTnI and MDA and increase the activity of SOD compared with the I/R group. In addition, the mRNA expression of ROCK1 and ROCK2 was downregulated, the protein expression of p-MYPT1 and p-MLC was decreased, and the ratio of Bcl-2/Bax was elevated in the RIPostC groups compared with the I/R group. Notably, the aforementioned index in I/R with Fas group was similar to the RIPostC group and no significant difference was observed between RIPostC and I/R+Fas. These results revealed that RIPostC could attenuate I/R injury and the underlying mechanisms might be associated with a reduction in myocardial apoptosis and the suppression of the Rho-kinase signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL