Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(2): 1561-1579, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37467431

ABSTRACT

An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
2.
Plant Cell ; 35(4): 1259-1280, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36653170

ABSTRACT

Nitrogen (N) and potassium (K) are essential macronutrients for plants. Sufficient N and K uptake from the environment is required for successful growth and development. However, how N and K influence each other at the molecular level in plants is largely unknown. In this study, we found loss-of-function mutation in SLAH3 (SLAC1 HOMOLOGUE 3), encoding a NO3- efflux channel in Arabidopsis thaliana, enhanced tolerance to high KNO3 concentrations. Surprisingly, slah3 mutants were less sensitive to high K+ but not NO3-. Addition of NO3- led to reduced phenotypic difference between wild-type and slah3 plants, suggesting SLAH3 orchestrates NO3--K+ balance. Non-invasive Micro-test Technology analysis revealed reduced NO3- efflux and enhanced K+ efflux in slah3 mutants, demonstrating that SLAH3-mediated NO3- transport and SLAH3-affected K+ flux are critical in response to high K +. Further investigation showed that two K+ efflux channels, GORK (GATED OUTWARDLY-RECTIFYING K+ CHANNEL) and SKOR (STELAR K+ OUTWARD RECTIFIER), interacted with SLAH3 and played key roles in high K+ response. The gork and skor mutants were slightly more sensitive to high K+ conditions. Less depolarization occurred in slah3 mutants and enhanced depolarization was observed in gork and skor mutants upon K+ treatment, suggesting NO3-/K+ efflux-mediated membrane potential regulation is involved in high K+ response. Electrophysiological results showed that SLAH3 partially inhibited the activities of GORK and SKOR in Xenopus laevis oocytes. This study revealed that the anion channel SLAH3 interacts with the potassium channels GORK and SKOR to modulate membrane potential by coordinating N-K balance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Potassium Channels/genetics , Arabidopsis Proteins/metabolism , Membrane Potentials , Anions/metabolism , Homeostasis , Plants/metabolism , Potassium/metabolism , Ion Channels/genetics
3.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077547

ABSTRACT

The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.


Subject(s)
Arabidopsis Proteins , Brassinosteroids , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Plant Development/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Physiol Plant ; 174(4): e13753, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36004735

ABSTRACT

In Nicotiana tabacum, the degeneration of connective tissue and stomium tissue (the stomium and circular cell cluster [CCC]) is essential for anther dehiscence. Both connective cells and CCC cells are crystal idioblasts, and these cells will undergo degeneration after accumulating calcium oxalate (CaOx) crystals. However, detailed data concerning this process are minimal. Therefore, this study used cellular biological and physiological methods to illustrate this relationship. Results demonstrated that tobacco anther dehiscence is a series of timed programmed cell death (PCD) processes that include the CCC, connective tissue, and stomium. The degenerating crystal idioblasts of the tobacco anther were found to possess two hallmark characteristics that distinguished them from normal PCD cells, namely dynamic changes in CaOx crystals and the appearance of numerous peroxisomes. The accumulation of CaOx and the production of H2 O2 occurred simultaneously or successively before PCD. The peak H2 O2 content was found to appear after the insoluble oxalate. Further, CeCl3 cytochemistry staining was used to detect subcellular H2 O2 , and the precipitate of H2 O2 was primarily present in peroxisomes and around CaOx crystals. These results show that anther dehiscence in N. tabacum is a PCD process in which crystal idioblasts play a vital role in CaOx degradation and H2 O2 production.


Subject(s)
Calcium Oxalate , Nicotiana , Apoptosis/physiology , Calcium Oxalate/metabolism , Nicotiana/metabolism
5.
J Integr Plant Biol ; 64(7): 1303-1309, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35546272

ABSTRACT

Receptor-like kinases (RLKs) are a large group of plant-specific transmembrane proteins mainly acting as receptors or co-receptors of various extracellular signals. They usually turn extracellular signals into intracellular responses via altering gene expression profiles. However, recent studies confirmed that many RLKs can physically interact with diverse membrane-localized transport proteins and regulate their activities for speedy responses in limited tissues or cells. In this minireview, we highlight recent discoveries regarding how RLKs can work with membrane transport proteins collaboratively and thereby trigger cellular responses in a precise and rapid manner. It is anticipated that such regulation broadly presents in plants and more examples will be gradually revealed when in-depth analyses are conducted for the functions of RLKs.


Subject(s)
Membrane Transport Proteins , Signal Transduction , Membrane Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Signal Transduction/physiology
6.
J Integr Plant Biol ; 63(7): 1353-1366, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33764637

ABSTRACT

Brassinosteroids (BRs) are a group of steroidal phytohormones, playing critical roles in almost all physiological aspects during the life span of a plant. In Arabidopsis, BRs are perceived at the cell surface, triggering a reversible phosphorylation-based signaling cascade that leads to the activation and nuclear accumulation of a family of transcription factors, represented by BES1 and BZR1. Protein farnesylation is a type of post-translational modification, functioning in many important cellular processes. Previous studies demonstrated a role of farnesylation in BR biosynthesis via regulating the endoplasmic reticulum localization of a key bassinolide (BL) biosynthetic enzyme BR6ox2. Whether such a process is also involved in BR signaling is not understood. Here, we demonstrate that protein farnesylation is involved in mediating BR signaling in Arabidopsis. A loss-of-function mutant of ENHANCED RESPONSE TO ABA 1 (ERA1), encoding a ß subunit of the protein farnesyl transferase holoenzyme, can alter the BL sensitivity of bak1-4 from a reduced to a hypersensitive level. era1 can partially rescue the BR defective phenotype of a heterozygous mutant of bin2-1, a gain-of-function mutant of BIN2 which encodes a negative regulator in the BR signaling. Our genetic and biochemical analyses revealed that ERA1 plays a significant role in regulating the protein stability of BES1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brassinosteroids/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Protein Prenylation , Signal Transduction/physiology , Steroids, Heterocyclic/metabolism
7.
Mol Plant ; 13(11): 1594-1607, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32916335

ABSTRACT

Root growth is maintained by the continuous division of cells in the apical meristem. ROOT MERISTEM GROWTH FACTOR 1 (RGF1) is a critical peptide hormone regulating root stem cell niche maintenance. Previous studies discovered that five closely related leucine-rich repeat receptor-like protein kinases (LRR-RLKs), named RGF1 INSENSITIVES (RGIs) or RGF1 RECEPTORS (RGFRs), are able to perceive the RGF1 signal and redundantly control root stem cell niche maintenance. RGF1 regulates root meristem activity mainly via two downstream transcription factors, PLETHORA 1 (PLT1) and PLT2. Regulatory proteins connecting cell surface RGF1-RGI1 and nuclear PLTs, however, were not identified. Here, we report that the mitogen-activated protein (MAP) kinase kinase 4 (MKK4) and MAP kinase 3 (MPK3) were co-immunoprecipitated with RGI1-FLAG after Arabidopsis seedlings were treated with RGF1. Genetic and biochemical assays confirmed that MKK4 and MKK5, and their downstream targets MPK3 and MPK6, are essential RGI-dependent regulators of root meristem development. In addition, we found that the MKK4/MKK5-MPK3/MPK6 module functions downstream of YDA, a MAPKKK. Our results demonstrate that RGF1-RGI1 regulate the expression of PLT1/PLT2 via a YDA-MKK4/MKK5-MPK3/MPK6 signaling cascade.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , MAP Kinase Signaling System , Meristem/growth & development , Peptides/metabolism , Plant Roots/growth & development , Arabidopsis/metabolism , Meristem/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Roots/metabolism , Signal Transduction
8.
Cell Res ; 29(12): 984-993, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31601978

ABSTRACT

The phenomenon of plant root tips sensing moisture gradient in soil and growing towards higher water potential is designated as root hydrotropism, which is critical for plants to survive when water is a limited factor. Molecular mechanisms regulating such a fundamental process, however, are largely unknown. Here we report our identification that cytokinins are key signaling molecules directing root growth orientation in a hydrostimulation (moisture gradient) condition. Lower water potential side of the root tip shows more cytokinin response relative to the higher water potential side. Consequently, two cytokinin downstream type-A response regulators, ARR16 and ARR17, were found to be up-regulated at the lower water potential side, causing increased cell division in the meristem zone, which allows the root to bend towards higher water potential side. Genetic analyses indicated that various cytokinin biosynthesis and signaling mutants, including the arr16 arr17 double mutant, are significantly less responsive to hydrostimulation. Consistently, treatments with chemical inhibitors interfering with either cytokinin biosynthesis or cell division completely abolished root hydrotropic response. Asymmetrically induced expression of ARR16 or ARR17 effectively led to root bending in both wild-type and miz1, a previously known hydrotropism-defective mutant. These data demonstrate that asymmetric cytokinin distribution is a primary determinant governing root hydrotropism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Cytokinins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Meristem/growth & development , Tropism , Arabidopsis/metabolism , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Cytokinins/antagonists & inhibitors , Cytokinins/genetics , Gene Expression Regulation, Plant/physiology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Meristem/metabolism , Mutation , Water/metabolism
9.
Plant Cell ; 30(10): 2383-2401, 2018 10.
Article in English | MEDLINE | ID: mdl-30201822

ABSTRACT

Appropriate cell division and differentiation ensure normal anther development in angiosperms. BARELY ANY MERISTEM 1/2 (BAM1/2) and RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), two groups of leucine-rich repeat receptor-like protein kinases, are required for early anther cell specification. However, little is known about the molecular mechanisms underlying these two RLK-mediated signaling pathways. Here, we show that CLAVATA3 INSENSITIVE RECEPTOR KINASEs (CIKs), a group of novel coreceptor protein kinase-controlling stem cell homeostasis, play essential roles in BAM1/2- and RPK2-regulated early anther development in Arabidopsis thaliana The archesporial cells of cik1/2/3 triple and cik1/2/3/4 quadruple mutant anthers perform anticlinal division instead of periclinal division. Defective cell division and specification of the primary and inner secondary parietal cells occur in these mutant anthers. The disordered divisions and specifications of anther wall cells finally result in excess microsporocytes and a lack of one to three parietal cell layers in mutant anthers, resembling rpk2 or bam1/2 mutant anthers. Genetic and biochemical analyses indicate that CIKs function as coreceptors of BAM1/2 and RPK2 to regulate archesporial cell division and determine the specification of anther parietal cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Flowers/growth & development , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Cell Differentiation/genetics , Flowers/cytology , Flowers/metabolism , Gene Expression Regulation, Plant , Mutation , Phosphorylation , Plant Cells/physiology , Plants, Genetically Modified , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics
10.
Cell Res ; 26(6): 686-98, 2016 06.
Article in English | MEDLINE | ID: mdl-27229312

ABSTRACT

RGF1, a secreted peptide hormone, plays key roles in root meristem development in Arabidopsis. Previous studies indicated that a functional RGF1 needs to be sulfated at a tyrosine residue by a tyrosylprotein sulfotransferase and that RGF1 regulates the root meristem activity mainly via two downstream transcription factors, PLETHORA 1 (PLT1) and PLT2. How extracellular RGF1 is perceived by a plant cell, however, is unclear. Using genetic approaches, we discovered a clade of leucine-rich repeat receptor-like kinases, designated as RGF1 INSENSITIVE 1 (RGI1) to RGI5, serving as receptors of RGF1. Two independent rgi1 rgi2 rgi3 rgi4 rgi5 quintuple mutants display a consistent short primary root phenotype with a small size of meristem. An rgi1 rgi2 rgi3 rgi4 quadruple mutant shows a significantly reduced sensitivity to RGF1, and the quintuple mutant is completely insensitive to RGF1. The expression of PLT1 and PLT2 is almost undetectable in the quintuple mutant. Ectopic expression of PLT2 driven by an RGI2 promoter in the quintuple mutant greatly rescued its root meristem defects. One of the RGIs, RGI1, was subsequently analyzed biochemically in detail. In vitro dot blotting and pull-down analyses indicated that RGI1 can physically interact with RGF1. Exogenous application of RGF1 can quickly and simultaneously induce the phosphorylation and ubiquitination of RGI1, indicating that RGI1 can perceive and transduce the RGF1 peptide signal. Yet, the activated RGI1 is likely turned over rapidly. These results demonstrate that RGIs, acting as the receptors of RGF1, play essential roles in RGF1-PLT-mediated root meristem development in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Meristem/growth & development , Meristem/metabolism , Proteins/metabolism , Arabidopsis/genetics , Down-Regulation/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Leucine-Rich Repeat Proteins , Meristem/genetics , Models, Biological , Mutation/genetics , Phenotype , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Binding , Sulfates/metabolism , Ubiquitination
11.
Plant Cell Rep ; 34(6): 1075-87, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25700982

ABSTRACT

KEY MESSAGE: Endophytic microbes Bacillus sp. LZR216 isolated from Arabidopsis root promoted Arabidopsis seedlings growth. It may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. Plant roots are colonized by an immense number of microbes, including epiphytic and endophytic microbes. It was found that they have the ability to promote plant growth and protect roots from biotic and abiotic stresses. But little is known about the mechanism of the endophytic microbes-regulated root development. We isolated and identified a Bacillus sp., named as LZR216, of endophytic bacteria from Arabidopsis root. By employing a sterile experimental system, we found that LZR216 promoted the Arabidopsis seedlings growth, which may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. By testing the cell type-specific developmental markers, we demonstrated that Bacillus sp. LZR216 increases the DR5::GUS and DR5::GFP expression but decreases the CYCB1;1::GUS expression in Arabidopsis root tips. Further studies indicated that LZR216 is able to inhibit the meristematic length and decrease the cell division capability but has little effect on the quiescent center function of the root meristem. Subsequently, it was also shown that LZR216 has no significant effects on the primary root length of the pin2 and aux1-7 mutants. Furthermore, LZR216 down-regulates the levels of PIN1-GFP, PIN2-GFP, PIN3-GFP, and AUX1-YFP. In addition, the wild-type Arabidopsis seedlings in the present of 1 or 5 µM NPA (an auxin transport inhibitor) were insensitive to LZR216-inhibited primary root elongation. Collectively, LZR216 regulates the development of root system architecture depending on polar auxin transport. This study shows a new insight on the ability of beneficial endophytic bacteria in regulating postembryonic root development.


Subject(s)
Arabidopsis/microbiology , Bacillus/physiology , Endophytes/physiology , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Bacillus/isolation & purification , Biological Transport , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , Phylogeny , Plant Roots/cytology , Plant Roots/microbiology , Plants, Genetically Modified , Seedlings/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...