Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.111
Filter
1.
Article in English | MEDLINE | ID: mdl-38703990

ABSTRACT

Heated effluent injection, cold hypolimnetic water inputs from dams, and extreme weather events can lead to unpredictable temperature fluctuations in natural waters, impacting fish performance and fitness. We hypothesized that fish exposed to such unpredictable fluctuations would exhibit weaker growth and enhanced thermal tolerance compared to predictable conditions. Qingbo (Spinibarbus sinensis) was selected as the experimental subject in this study. The qingbo were divided into a constant temperature group (C, 22 ± 0.5 °C), a predictable temperature fluctuation group (PF, 22 ± 4 °C, first warming, then cooling within a day) and an unpredictable temperature fluctuation group (UF, 22 ± 4 °C, the order of warming or cooling is random). After 40 days of temperature acclimation, the growth, metabolic rate, spontaneous activity, thermal tolerance, plasma cortisol concentration and liver hsp70 level of the fish were measured. Unexpectedly, neither the PF nor the UF group showed decreased growth compared to the C group. This could be attributed to the fact that temperature variation did not lead to a substantial increase in basic energy expenditure. Furthermore, feeding rates increased due to temperature fluctuations, although the difference was not significant. Both the PF and UF groups exhibited increased upper thermal tolerance, but only the UF group exhibited improved lower thermal tolerance and higher liver hsp70 levels compared to the C group. The qingbo that experienced unpredictable temperature fluctuations had the best thermal tolerance among the 3 groups, which might have occurred because they had the highest level of hsp70 expression. This may safeguard fish against the potential lethal consequences of extreme temperatures in the future. These findings suggested that qingbo exhibited excellent adaptability to both predictable and unpredictable temperature fluctuations, which may be associated with frequent temperature fluctuations in its natural habitat.

2.
Int J Biol Sci ; 20(7): 2403-2421, 2024.
Article in English | MEDLINE | ID: mdl-38725848

ABSTRACT

Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.


Subject(s)
Breast Neoplasms , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Phosphorylation , Cell Line, Tumor , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Proto-Oncogene Proteins , MAP Kinase Kinase Kinases
3.
Neurol Sci ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733435

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease, which is characterized by the selective loss of the upper and lower motor neurons. The pathogenesis of ALS remains to be elucidated and has been connected to genetic, environmental and immune conditions. Evidence from clinical and experimental studies has suggested that the immune system played an important role in ALS pathophysiology. Autoantibodies are essential components of the immune system. Several autoantibodies directed at antigens associated with ALS pathogenesis have been identified in the serum and/or cerebrospinal fluid of ALS patients. The aim of this review is to summarize the presence and clinical significance of autoantibodies in ALS.

4.
Cancer Commun (Lond) ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734931

ABSTRACT

BACKGROUND: Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape. METHODS: Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort. RESULTS: A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues. CONCLUSIONS: The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.

5.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691935

ABSTRACT

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Subject(s)
Ferrous Compounds , Nitrobenzenes , Anaerobiosis , Nitrobenzenes/metabolism , Nitrobenzenes/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Wastewater/chemistry , Bioreactors
6.
J Nat Med ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704807

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.

7.
Article in English | MEDLINE | ID: mdl-38710046

ABSTRACT

Cost-effective bulk scintillators with high density, large-area, and long-term stability are desirable for high-energy radiation detections. Conventional bulk polycrystalline or single-crystal scintillators are generally synthesized by high-temperature approaches, and it is challenging to realize simultaneously high detectivity/responsivity, spatial resolution, and rapid time response. Here, we report the cold sintering of bulk scintillators (at 90 °C) based on an "emitter-in-matrix" principle, in which emissive CsPbBr3 nanocrystals are embedded in a durable and transparent Cs4PbBr6 matrix. These bulk scintillators exhibit high light yield (33,800 photons MeV-1), low detection limit (79 nGyair s-1), fast decay time (9.8 ns), and outstanding spatial resolution of 8.9 lp mm-1 to X-ray radiation and an energy resolution of 19.3% for γ-ray (59.6 keV) detection. The composite scintillator also shows exceptional stability against environmental degradation and cyclic X-ray radiation. Our results demonstrate a cost-effective strategy for developing perovskite-based bulk transparent scintillators with exceptional performance and high radioluminescence stability for high-energy radiation detection and imaging.

8.
Angew Chem Int Ed Engl ; : e202407502, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721850

ABSTRACT

Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (φPL: 72%, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92%), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0%. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.

9.
Biochem Pharmacol ; : 116268, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723720

ABSTRACT

Although Janus kinase 2 (JAK2) plays a critical role in the progression of triple-negative breast cancer (TNBC), its inhibitors are incapable of eradicating these tumor cells, implicating drug resistance mechanisms exist. Our evidences show that TNBC cells express high level of Serine/Threonine Kinase 16 (STK16) when JAK2 signaling is blocked. Pharmacological inhibition or silencing of STK16 significantly enhances the sensitivity of TNBC cells to JAK2 inhibition, while over-expression of STK16 alleviates the anti-tumor effect of JAK2-inhibitor. Mechanistically, elevated STK16 expression rescues the phosphorylation status and transcriptional activity of STAT3, as STK16 is able to directly catalyze the phosphorylation of STAT3 at ser-727 residue. Our data indicate that upon JAK2 inhibition, TNBC cells express STK16 to maintain STAT3 transcriptional activity, dual-inhibition of JAK2/STK16 offers a potential way to treat TNBC patients.

10.
Water Res ; 257: 121654, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38701552

ABSTRACT

Volatile fatty acids (VFAs) derived from arrested anaerobic digestion (AD) can be recovered as a valuable commodity for value-added synthesis. However, separating VFAs from digestate with complex constituents and a high-water content is an energy-prohibitive process. This study developed an innovative technology to overcome this barrier by integrating deep eutectic solvents (DESs) with an omniphobic membrane into a membrane contactor for efficient extraction of anhydrous VFAs with low energy consumption. A kinetic model was developed to elucidate the mechanistic differences between this novel omniphobic membrane-enabled DES extraction and the previous hydrophobic membrane-enabled NaOH extraction. Experimental results and mechanistic modeling suggested that VFA extraction by the DES is a reversible adsorption process facilitating subsequent VFA separation via anhydrous distillation. High vapor pressure of shorter-chain VFAs and low Nernst distribution coefficients of longer-chain VFAs contributed to DES-driven extraction, which could enable continuous and in-situ recovery and conversion of VFAs from AD streams.

11.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701419

ABSTRACT

It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.


Subject(s)
Cyanobacteria , Promoter Regions, Genetic , Cyanobacteria/genetics , Computational Biology/methods , Algorithms
12.
Sci Rep ; 14(1): 10296, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704464

ABSTRACT

This study combines laboratory experiments and discrete element simulation methods to analyze the mechanism and deterioration patterns of sandstone surrounding rock voiding the bottom of a heavy-haul railway tunnel. It is based on previously acquired measurement data from optical fiber grating sensors installed in the Taihangshan Mountain Tunnel of the Wari Railway. By incorporating rock particle wastage rate results, a method for calculating the peak strength and elastic modulus attenuation of surrounding rock is proposed. Research indicates that the operation of heavy-haul trains leads to an instantaneous increase in the dynamic water pressure on the bottom rock ranging 144.4-390.0%, resulting in high-speed water flow eroding the rock. After 1-2 years of operation, the bottom water and soil pressures increase by 526.5% and 390.0%, respectively. Focusing on sandstone surrounding rock with high observability, laboratory experiments were conducted to monitor the degradation stages of infiltration, particle loss, and voiding of rock under the action of dynamic water flow. The impact of water flow on the "cone-shaped" bottom rock deformation was also clarified. The extent of rock deterioration and voiding was determined using miniature water and soil pressure sensors in conjunction with discrete element numerical simulations. The measured rock particle loss was used as a criterion. Finally, a fitting approach is derived to calculate the peak strength and elastic modulus attenuation of surrounding rock, gaining insight into and providing a reference for the maintenance and disposal measures for the bottom operation of heavy-haul railway tunnels.

13.
Brain ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739753

ABSTRACT

Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.

14.
Food Chem ; 449: 138957, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608600

ABSTRACT

The effects of microwave drying (MD), hot air drying (HAD), vacuum hot air drying (VD), and vacuum freeze drying (VFD) on the volatile profiles of Penaeus vannamei were investigated. A total of 89 and 94 volatile compounds were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and monolithic material sorptive extraction gas chromatography-mass spectrometry (MMSE-GC-MS), respectively. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and variable influence on projection (VIP) models were utilized to select characteristic volatiles and key marker compounds (e.g., octanal, 1-octen-3-ol, 2-methyl-butanal, 2-ethyl-furan, and trimethyl-pyrazine) to discriminate among four drying methods. Based on synthesis of odor descriptions and sensory evaluation, it was found that P. vannamei via MD, HAD, and VD greatly reduced the fishy and generated roasted, fatty, and smoked odors. This study systematically analyzed the aroma characteristics of four traditional dried P. vannamei products, which may provide theoretical guidance for industrial production.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Penaeidae , Solid Phase Microextraction , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Solid Phase Microextraction/methods , Odorants/analysis , Penaeidae/chemistry , Humans , Taste , Desiccation/methods
15.
World Neurosurg ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608816

ABSTRACT

OBJECTIVE: To propose a novel surgical strategy-thoracic anterior controllable antedisplacement fusion (TACAF) to treat multilevel thoracic ossification of the posterior longitudinal ligament (mT-OPLL), and investigate its safety and efficacy. METHODS: Between January 2019 and December 2021, a total of 49 patients with thoracic myelopathy due to mT-OPLL surgically treated with TACAF were retrospectively reviewed. Patients' demographic data, radiologic parameters, and surgery-related complications, modified Japanese Orthopedic Association (mJOA) and visual analog scale (VAS) scores, thoracic kyphosis (TK), kyphosis angle in fusion area (FSK), thoracic curvature, spinal cord curvature, and curvature of curved rod in surgical region, diameter, and area of the spinal cord at the most compressed level were included. RESULTS: All patients acquired satisfactory recovery of neurologic function and overall complication rate was low at the final follow up. The mean mJOA of the laminectomy+TACAF and Full Lamina Preservation +TACAF groups, respectively, was 3.74 ± 2.05, 3.67 ± 1.95 before surgery, and 9.97 ± 0.83, 9.80 ± 0.68 at the final followed up, with the recovery rate of 84.26% ± 14.20%, 82.79% ± 10.35%, as to VAS Scores. The mean FSK was 34.50 ± 4.46,35.33 ± 3.44 before surgery, and was restored to 20.97 ± 5.70, 22.93 ± 6.34 at the final followed up respectively, as to mean TK (P < 0.05). Spinal cord curvature was improved from 34.12 ± 3.59, 33.93 ± 3.45 before surgery to 19.47 ± 3.53, 18.80 ± 3.17 at the final follow-up respectively, as to thoracic curvature (P < 0.05). In addition, the area and diameter of the spinal cord was also significantly improved at the final follow up (all P < 0.05). The curvature of the thoracic pulp and thoracic vertebra is closely related to the curvature of the rod. There was no statistically significant difference in the incidence of the pelvis and the slope value of the sacrum. CONCLUSIONS: This strategy provides a novel solution for the treatment of mT-OPLL with favorable recovery of neurological function, the tension of spinal cord, and fewer complications.

16.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38592730

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Subject(s)
Photothermal Therapy , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Animals , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Immunotherapy , Phototherapy/methods
17.
Article in English | MEDLINE | ID: mdl-38662560

ABSTRACT

Multi-Object tracking in real world environments is a tough problem, especially for cell morphogenesis with division. Most cell tracking methods are hard to achieve reliable mitosis detection, efficient inter-frame matching, and accurate state estimation simultaneously within a unified tracking framework. In this paper, we propose a novel unified framework that leverages a spatio-temporal ant colony evolutionary algorithm to track cells amidst mitosis under measurement uncertainty. Each Bernoulli ant colony representing a migrating cell is able to capture the occurrence of mitosis through the proposed Isolation Random Forest (IRF)-assisted temporal mitosis detection algorithm with the assumption that mitotic cells exhibit unique spatio-temporal features different from non-mitotic ones. Guided by prediction of a division event, multiple ant colonies evolve between consecutive frames according to an augmented assignment matrix solved by the extended Hungarian method. To handle dense cell populations, an efficient group partition between cells and measurements is exploited, which enables multiple assignment tasks to be executed in parallel with a reduction in matrix dimension. After inter-frame traversing, the ant colony transitions to a foraging stage in which it begins approximating the Bernoulli parameter to estimate cell state by iteratively updating its pheromone field. Experiments on multi-cell tracking in the presence of cell mitosis and morphological changes are conducted, and the results demonstrate that the proposed method outperforms state-of-the-art approaches, striking a balance between accuracy and computational efficiency.

18.
Adv Mater ; : e2402628, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670114

ABSTRACT

We report a new nanoporous amorphous carbon (NAC) structure that achieves both ultrahigh strength and high electrical conductivity, which are usually incompatible in porous materials. By using modified spark plasma sintering, we create three amorphous carbon phases with different atomic bonding configurations. The composite consists of an amorphous sp2-carbon matrix mixed with amorphous sp3-carbon and amorphous graphitic motif. NAC structure has isotropic electrical conductivity of up to 12,000 S/m, a Young's modulus of up to ∼5 GPa, and Vickers hardness of over 900 MPa. These properties are superior to those of existing conductive nanoporous materials. Direct investigation of the multiscale structure of this material through transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and machine learning-based electron tomography revealed that the origin of the remarkable material properties is the well-organized sp2/sp3 amorphous carbon phases with a core-shell-like architecture, where the sp3-rich carbon forms a resilient core surrounded by a conductive sp2-rich layer. Our research not only introduces novel material with exceptional properties, but also opens new opportunities for exploring amorphous structures and designing high-performance materials. This article is protected by copyright. All rights reserved.

19.
ISA Trans ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38643036

ABSTRACT

This work presents a resilient distributed optimization algorithm based on the event-triggering mechanism for cyber-physical systems (CPSs) to optimize an average of convex cost functions corresponding to multiple agents under adversarial environments. Two attack scenarios, including the f-total (each agent is affected by at most f malicious agents in the whole network) and the f-local (each agent is affected by at most f malicious agents in its in-neighbor set) attacks are considered. Subsequently, the convergence conditions under these two attack scenarios are provided, respectively, both of which guarantee that the state values of benign agents converge to a bounded error range. The optimality conditions are also presented by theoretical analysis, which guarantee that the state values of benign agents converge to a safety interval constructed by local optimal values under certain graph conditions, despite the misbehavior of malicious agents. In addition, four numerical examples are presented to show the effectiveness and superiority of the event-triggering resilient distributed optimization (RDO-E) algorithm. Compared to existing resilient algorithms, the proposed method achieves resilient distributed optimization with higher accuracy and less demanding communication overheads. Finally, by applying the proposed method to the multi-microgrid system, a resilient economic dispatch problem (REDP) is successfully solved, which validates the practical viability of the RDO-E algorithm.

20.
Expert Opin Drug Saf ; : 1-8, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38602862

ABSTRACT

BACKGROUND: Lanthanum carbonate is widely used to manage serum phosphate and calcium levels in end-stage kidney disease (ESKD) patients, yet comprehensive long-term safety data are lacking. This study leverages the FDA Adverse Event Reporting System (FAERS) to assess the extended safety profile of lanthanum carbonate. RESEARCH DESIGN AND METHODS: We analyzed FAERS data (2004-2022) to study the association between lanthanum carbonate and adverse events (AEs). Using MedDRA v25.0, we identified risk signals through System Organ Classes (SOCs) and Preferred Terms (PTs). Disproportionality analyzes quantified lanthanum carbonate-associated AE signals. RESULTS: Among 3,284 reports, 2,466 were primary suspected AEs linked to lanthanum carbonate. Males reported AEs more frequently than females. Patients aged over 64 represented the majority. Median onset time for lanthanum carbonate-related AEs was 146 days. Gastrointestinal disorders were prevalent. We identified 16 new signals, including stress, abnormal hepatic function, cholelithiasis, bile duct stone, gastric cancer, and adenocarcinoma gastric. Stress was notable, particularly in male patients over 65 and those with lower weight. CONCLUSIONS: This study affirms lanthanum carbonate's long-term safety for reducing elevated blood phosphorus levels. While gastrointestinal disorders were common, attention must focus on emerging AEs, particularly stress, especially in elderly patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...