Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Comput Biol Med ; 178: 108699, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38870725

ABSTRACT

Accurate prediction of drug-target binding affinity (DTA) plays a pivotal role in drug discovery and repositioning. Although deep learning methods are widely used in DTA prediction, two significant challenges persist: (i) how to effectively represent the complex structural information of proteins and drugs; (ii) how to precisely model the mutual interactions between protein binding sites and key drug substructures. To address these challenges, we propose a MSFFDTA (Multi-scale feature fusion for predicting drug target affinity) model, in which multi-scale encoders effectively capture multi-level structural information of drugs and proteins are designed. And then a Selective Cross Attention (SCA) mechanism is developed to filter out the trivial interactions between drug-protein substructure pairs and retain the important ones, which will make the proposed model better focusing on these key interactions and offering insights into their underlying mechanism. Experimental results on two benchmark datasets demonstrate that MSFFDTA is superior to several state-of-the-art methods across almost all comparison metrics. Finally, we provide the ablation and case studies with visualizations to verify the effectiveness and the interpretability of MSFFDTA. The source code is freely available at https://github.com/whitehat32/MSFF-DTA/.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701419

ABSTRACT

It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.


Subject(s)
Cyanobacteria , Promoter Regions, Genetic , Cyanobacteria/genetics , Computational Biology/methods , Algorithms
3.
Methods ; 222: 51-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184219

ABSTRACT

The interaction between human microbes and drugs can significantly impact human physiological functions. It is crucial to identify potential microbe-drug associations (MDAs) before drug administration. However, conventional biological experiments to predict MDAs are plagued by drawbacks such as time-consuming, high costs, and potential risks. On the contrary, computational approaches can speed up the screening of MDAs at a low cost. Most computational models usually use a drug similarity matrix as the initial feature representation of drugs and stack the graph neural network layers to extract the features of network nodes. However, different calculation methods result in distinct similarity matrices, and message passing in graph neural networks (GNNs) induces phenomena of over-smoothing and over-squashing, thereby impacting the performance of the model. To address these issues, we proposed a novel graph representation learning model, dual-modal graph learning for microbe-drug association prediction (DMGL-MDA). It comprises a dual-modal embedding module, a bipartite graph network embedding module, and a predictor module. To assess the performance of DMGL-MDA, we compared it against state-of-the-art methods using two benchmark datasets. Through cross-validation, we illustrated the superiority of DMGL-MDA. Furthermore, we conducted ablation experiments and case studies to validate the effective performance of the model.


Subject(s)
Benchmarking , Neural Networks, Computer , Humans , Research Design
4.
J Chem Inf Model ; 64(1): 96-109, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38132638

ABSTRACT

Detecting drug-drug interactions (DDIs) is an essential step in drug development and drug administration. Given the shortcomings of current experimental methods, the machine learning (ML) approach has become a reliable alternative, attracting extensive attention from the academic and industrial fields. With the rapid development of computational science and the growing popularity of cross-disciplinary research, a large number of DDI prediction studies based on ML methods have been published in recent years. To give an insight into the current situation and future direction of DDI prediction research, we systemically review these studies from three aspects: (1) the classic DDI databases, mainly including databases of drugs, side effects, and DDI information; (2) commonly used drug attributes, which focus on chemical, biological, and phenotypic attributes for representing drugs; (3) popular ML approaches, such as shallow learning-based, deep learning-based, recommender system-based, and knowledge graph-based methods for DDI detection. For each section, related studies are described, summarized, and compared, respectively. In the end, we conclude the research status of DDI prediction based on ML methods and point out the existing issues, future challenges, potential opportunities, and subsequent research direction.


Subject(s)
Knowledge Bases , Machine Learning , Drug Interactions , Pharmaceutical Preparations , Databases, Factual
5.
iScience ; 26(11): 108285, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026198

ABSTRACT

It is a critical step in lead optimization to evaluate the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like compounds. Classical single-task learning (STL) has effectively predicted individual ADMET endpoints with abundant labels. Conversely, multi-task learning (MTL) can predict multiple ADMET endpoints with fewer labels, but ensuring task synergy and highlighting key molecular substructures remain challenges. To tackle these issues, this work elaborates a multi-task graph learning framework for predicting multiple ADMET properties of drug-like small molecules (MTGL-ADMET) by holding a new paradigm of MTL, "one primary, multiple auxiliaries." It first adeptly combines status theory with maximum flow for auxiliary task selection. The subsequent phase introduces a primary-task-centric MTL model with integrated modules. MTGL-ADMET not only outstrips existing STL and MTL methods but also offers a transparent lens into crucial molecular substructures. It is anticipated that this work can promote lead compound finding and optimization in drug discovery.

6.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37572298

ABSTRACT

MOTIVATION: Metabolic stability plays a crucial role in the early stages of drug discovery and development. Accurately modeling and predicting molecular metabolic stability has great potential for the efficient screening of drug candidates as well as the optimization of lead compounds. Considering wet-lab experiment is time-consuming, laborious, and expensive, in silico prediction of metabolic stability is an alternative choice. However, few computational methods have been developed to address this task. In addition, it remains a significant challenge to explain key functional groups determining metabolic stability. RESULTS: To address these issues, we develop a novel cross-modality graph contrastive learning model named CMMS-GCL for predicting the metabolic stability of drug candidates. In our framework, we design deep learning methods to extract features for molecules from two modality data, i.e. SMILES sequence and molecule graph. In particular, for the sequence data, we design a multihead attention BiGRU-based encoder to preserve the context of symbols to learn sequence representations of molecules. For the graph data, we propose a graph contrastive learning-based encoder to learn structure representations by effectively capturing the consistencies between local and global structures. We further exploit fully connected neural networks to combine the sequence and structure representations for model training. Extensive experimental results on two datasets demonstrate that our CMMS-GCL consistently outperforms seven state-of-the-art methods. Furthermore, a collection of case studies on sequence data and statistical analyses of the graph structure module strengthens the validation of the interpretability of crucial functional groups recognized by CMMS-GCL. Overall, CMMS-GCL can serve as an effective and interpretable tool for predicting metabolic stability, identifying critical functional groups, and thus facilitating the drug discovery process and lead compound optimization. AVAILABILITY AND IMPLEMENTATION: The code and data underlying this article are freely available at https://github.com/dubingxue/CMMS-GCL.


Subject(s)
Drug Discovery , Neural Networks, Computer , Research Design
7.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37401373

ABSTRACT

Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Humans , Drug Interactions , Natural Language Processing , Drug Discovery
8.
Bioinformatics ; 39(39 Suppl 1): i326-i336, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37387157

ABSTRACT

MOTIVATION: Deep learning-based molecule generation becomes a new paradigm of de novo molecule design since it enables fast and directional exploration in the vast chemical space. However, it is still an open issue to generate molecules, which bind to specific proteins with high-binding affinities while owning desired drug-like physicochemical properties. RESULTS: To address these issues, we elaborate a novel framework for controllable protein-oriented molecule generation, named CProMG, which contains a 3D protein embedding module, a dual-view protein encoder, a molecule embedding module, and a novel drug-like molecule decoder. Based on fusing the hierarchical views of proteins, it enhances the representation of protein binding pockets significantly by associating amino acid residues with their comprising atoms. Through jointly embedding molecule sequences, their drug-like properties, and binding affinities w.r.t. proteins, it autoregressively generates novel molecules having specific properties in a controllable manner by measuring the proximity of molecule tokens to protein residues and atoms. The comparison with state-of-the-art deep generative methods demonstrates the superiority of our CProMG. Furthermore, the progressive control of properties demonstrates the effectiveness of CProMG when controlling binding affinity and drug-like properties. After that, the ablation studies reveal how its crucial components contribute to the model respectively, including hierarchical protein views, Laplacian position encoding as well as property control. Last, a case study w.r.t. protein illustrates the novelty of CProMG and the ability to capture crucial interactions between protein pockets and molecules. It's anticipated that this work can boost de novo molecule design. AVAILABILITY AND IMPLEMENTATION: The code and data underlying this article are freely available at https://github.com/lijianing0902/CProMG.


Subject(s)
Amino Acids , Deep Learning , Protein Engineering
9.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 9709-9725, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37027608

ABSTRACT

Predicting drug synergy is critical to tailoring feasible drug combination treatment regimens for cancer patients. However, most of the existing computational methods only focus on data-rich cell lines, and hardly work on data-poor cell lines. To this end, here we proposed a novel few-shot drug synergy prediction method (called HyperSynergy) for data-poor cell lines by designing a prior-guided Hypernetwork architecture, in which the meta-generative network based on the task embedding of each cell line generates cell line dependent parameters for the drug synergy prediction network. In HyperSynergy model, we designed a deep Bayesian variational inference model to infer the prior distribution over the task embedding to quickly update the task embedding with a few labeled drug synergy samples, and presented a three-stage learning strategy to train HyperSynergy for quickly updating the prior distribution by a few labeled drug synergy samples of each data-poor cell line. Moreover, we proved theoretically that HyperSynergy aims to maximize the lower bound of log-likelihood of the marginal distribution over each data-poor cell line. The experimental results show that our HyperSynergy outperforms other state-of-the-art methods not only on data-poor cell lines with a few samples (e.g., 10, 5, 0), but also on data-rich cell lines.


Subject(s)
Computational Biology , Neoplasms , Humans , Computational Biology/methods , Algorithms , Bayes Theorem , Neoplasms/drug therapy
10.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36642408

ABSTRACT

Current machine learning-based methods have achieved inspiring predictions in the scenarios of mono-type and multi-type drug-drug interactions (DDIs), but they all ignore enhancive and depressive pharmacological changes triggered by DDIs. In addition, these pharmacological changes are asymmetric since the roles of two drugs in an interaction are different. More importantly, these pharmacological changes imply significant topological patterns among DDIs. To address the above issues, we first leverage Balance theory and Status theory in social networks to reveal the topological patterns among directed pharmacological DDIs, which are modeled as a signed and directed network. Then, we design a novel graph representation learning model named SGRL-DDI (social theory-enhanced graph representation learning for DDI) to realize the multitask prediction of DDIs. SGRL-DDI model can capture the task-joint information by integrating relation graph convolutional networks with Balance and Status patterns. Moreover, we utilize task-specific deep neural networks to perform two tasks, including the prediction of enhancive/depressive DDIs and the prediction of directed DDIs. Based on DDI entries collected from DrugBank, the superiority of our model is demonstrated by the comparison with other state-of-the-art methods. Furthermore, the ablation study verifies that Balance and Status patterns help characterize directed pharmacological DDIs, and that the joint of two tasks provides better DDI representations than individual tasks. Last, we demonstrate the practical effectiveness of our model by a version-dependent test, where 88.47 and 81.38% DDI out of newly added entries provided by the latest release of DrugBank are validated in two predicting tasks respectively.


Subject(s)
Machine Learning , Neural Networks, Computer , Drug Interactions
11.
Front Microbiol ; 13: 944952, 2022.
Article in English | MEDLINE | ID: mdl-35707165

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2022.846915.].

12.
Bioinformatics ; 38(Suppl 1): i325-i332, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35758801

ABSTRACT

MOTIVATION: During lead compound optimization, it is crucial to identify pathways where a drug-like compound is metabolized. Recently, machine learning-based methods have achieved inspiring progress to predict potential metabolic pathways for drug-like compounds. However, they neglect the knowledge that metabolic pathways are dependent on each other. Moreover, they are inadequate to elucidate why compounds participate in specific pathways. RESULTS: To address these issues, we propose a novel Multi-Label Graph Learning framework of Metabolic Pathway prediction boosted by pathway interdependence, called MLGL-MP, which contains a compound encoder, a pathway encoder and a multi-label predictor. The compound encoder learns compound embedding representations by graph neural networks. After constructing a pathway dependence graph by re-trained word embeddings and pathway co-occurrences, the pathway encoder learns pathway embeddings by graph convolutional networks. Moreover, after adapting the compound embedding space into the pathway embedding space, the multi-label predictor measures the proximity of two spaces to discriminate which pathways a compound participates in. The comparison with state-of-the-art methods on KEGG pathways demonstrates the superiority of our MLGL-MP. Also, the ablation studies reveal how its three components contribute to the model, including the pathway dependence, the adapter between compound embeddings and pathway embeddings, as well as the pre-training strategy. Furthermore, a case study illustrates the interpretability of MLGL-MP by indicating crucial substructures in a compound, which are significantly associated with the attending metabolic pathways. It is anticipated that this work can boost metabolic pathway predictions in drug discovery. AVAILABILITY AND IMPLEMENTATION: The code and data underlying this article are freely available at https://github.com/dubingxue/MLGL-MP.


Subject(s)
Machine Learning , Neural Networks, Computer , Drug Discovery , Metabolic Networks and Pathways , Software
13.
Front Microbiol ; 13: 846915, 2022.
Article in English | MEDLINE | ID: mdl-35479616

ABSTRACT

Many drugs can be metabolized by human microbes; the drug metabolites would significantly alter pharmacological effects and result in low therapeutic efficacy for patients. Hence, it is crucial to identify potential drug-microbe associations (DMAs) before the drug administrations. Nevertheless, traditional DMA determination cannot be applied in a wide range due to the tremendous number of microbe species, high costs, and the fact that it is time-consuming. Thus, predicting possible DMAs in computer technology is an essential topic. Inspired by other issues addressed by deep learning, we designed a deep learning-based model named Nearest Neighbor Attention Network (NNAN). The proposed model consists of four components, namely, a similarity network constructor, a nearest-neighbor aggregator, a feature attention block, and a predictor. In brief, the similarity block contains a microbe similarity network and a drug similarity network. The nearest-neighbor aggregator generates the embedding representations of drug-microbe pairs by integrating drug neighbors and microbe neighbors of each drug-microbe pair in the network. The feature attention block evaluates the importance of each dimension of drug-microbe pair embedding by a set of ordinary multi-layer neural networks. The predictor is an ordinary fully-connected deep neural network that functions as a binary classifier to distinguish potential DMAs among unlabeled drug-microbe pairs. Several experiments on two benchmark databases are performed to evaluate the performance of NNAN. First, the comparison with state-of-the-art baseline approaches demonstrates the superiority of NNAN under cross-validation in terms of predicting performance. Moreover, the interpretability inspection reveals that a drug tends to associate with a microbe if it finds its top-l most similar neighbors that associate with the microbe.

14.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35470854

ABSTRACT

It is tough to detect unexpected drug-drug interactions (DDIs) in poly-drug treatments because of high costs and clinical limitations. Computational approaches, such as deep learning-based approaches, are promising to screen potential DDIs among numerous drug pairs. Nevertheless, existing approaches neglect the asymmetric roles of two drugs in interaction. Such an asymmetry is crucial to poly-drug treatments since it determines drug priority in co-prescription. This paper designs a directed graph attention network (DGAT-DDI) to predict asymmetric DDIs. First, its encoder learns the embeddings of the source role, the target role and the self-roles of a drug. The source role embedding represents how a drug influences other drugs in DDIs. In contrast, the target role embedding represents how it is influenced by others. The self-role embedding encodes its chemical structure in a role-specific manner. Besides, two role-specific items, aggressiveness and impressionability, capture how the number of interaction partners of a drug affects its interaction tendency. Furthermore, the predictor of DGAT-DDI discriminates direction-specific interactions by the combination between two proximities and the above two role-specific items. The proximities measure the similarity between source/target embeddings and self-role embeddings. In the designated experiments, the comparison with state-of-the-art deep learning models demonstrates the superiority of DGAT-DDI across a direction-specific predicting task and a direction-blinded predicting task. An ablation study reveals how well each component of DGAT-DDI contributes to its ability. Moreover, a case study of finding novel DDIs confirms its practical ability, where 7 out of the top 10 candidates are validated in DrugBank.


Subject(s)
Drug Interactions
15.
Drug Discov Today ; 27(5): 1350-1366, 2022 05.
Article in English | MEDLINE | ID: mdl-35248748

ABSTRACT

The screening of compound-protein interactions (CPIs) is one of the most crucial steps in finding hit and lead compounds. Deep learning (DL) methods for CPI prediction can address intrinsic limitations of traditional HTS and virtual screening with the advantage of low cost and high efficiency. This review provides a comprehensive survey of DL-based CPI prediction. It first summarizes popular databases of small-molecule compounds, proteins and binding complexes. Then, it outlines classical representations of compounds and proteins in turn. After that, this review briefly introduces state-of-the-art DL-based models in terms of design paradigms and investigates their prediction performance. Finally, it indicates current challenges and trends toward better CPI prediction and sketches out crucial approaches toward practical applications.


Subject(s)
Deep Learning , Databases, Factual , Drug Discovery/methods , Proteins/metabolism
16.
Anal Biochem ; 646: 114631, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35227661

ABSTRACT

It is crucial to identify DDIs and explore their underlying mechanism (e.g., DDIs types) for polypharmacy safety. However, the detection of DDIs in assays is still time-consuming and costly, due to the need for experimental search over a large space of drug combinations. Thus, many computational methods have been developed to predict DDIs, most of them focusing on whether a drug interacts with another or not. And a few deep learning-based methods address a more realistic screening task for identifying various DDI types, but they assume a DDI only triggers one pharmacological effect, while a DDI can trigger more types of pharmacological effects. Thus, here we proposed a novel end-to-end deep learning-based method (called deepMDDI) for the Multi-label prediction of Drug-Drug Interactions. deepMDDI contains an encoder derived from relational graph convolutional networks and a tensor-like decoder to uniformly model interactions. deepMDDI is not only efficient for DDI transductive prediction, but also inductive prediction. The experimental results show that our model is superior to other state-of-the-art deep learning-based methods. We also validated the power of deepMDDI in the DDIs multi-label prediction and found several new valid DDIs in the case study. In conclusion, deepMDDI is beneficial to uncover the mechanism and regularity of DDIs.


Subject(s)
Drug Interactions
17.
BMC Bioinformatics ; 23(1): 75, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172712

ABSTRACT

BACKGROUND: Prediction of drug-drug interactions (DDIs) can reveal potential adverse pharmacological reactions between drugs in co-medication. Various methods have been proposed to address this issue. Most of them focus on the traditional link prediction between drugs, however, they ignore the cold-start scenario, which requires the prediction between known drugs having approved DDIs and new drugs having no DDI. Moreover, they're restricted to infer whether DDIs occur, but are not able to deduce diverse DDI types, which are important in clinics. RESULTS: In this paper, we propose a cold start prediction model for both single-type and multiple-type drug-drug interactions, referred to as CSMDDI. CSMDDI predict not only whether two drugs trigger pharmacological reactions but also what reaction types they induce in the cold start scenario. We implement several embedding methods in CSMDDI, including SVD, GAE, TransE, RESCAL and compare it with the state-of-the-art multi-type DDI prediction method DeepDDI and DDIMDL to verify the performance. The comparison shows that CSMDDI achieves a good performance of DDI prediction in the case of both the occurrence prediction and the multi-type reaction prediction in cold start scenario. CONCLUSIONS: Our approach is able to predict not only conventional binary DDIs but also what reaction types they induce in the cold start scenario. More importantly, it learns a mapping function who can bridge the drugs attributes to their network embeddings to predict DDIs. The main contribution of CSMDDI contains the development of a generalized framework to predict the single-type and multi-type of DDIs in the cold start scenario, as well as the implementations of several embedding models for both single-type and multi-type of DDIs. The dataset and source code can be accessed at https://github.com/itsosy/csmddi .


Subject(s)
Pharmaceutical Preparations , Software , Drug Interactions
18.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34695842

ABSTRACT

Drug-drug interactions (DDIs) are interactions with adverse effects on the body, manifested when two or more incompatible drugs are taken together. They can be caused by the chemical compositions of the drugs involved. We introduce gated message passing neural network (GMPNN), a message passing neural network which learns chemical substructures with different sizes and shapes from the molecular graph representations of drugs for DDI prediction between a pair of drugs. In GMPNN, edges are considered as gates which control the flow of message passing, and therefore delimiting the substructures in a learnable way. The final DDI prediction between a drug pair is based on the interactions between pairs of their (learned) substructures, each pair weighted by a relevance score to the final DDI prediction output. Our proposed method GMPNN-CS (i.e. GMPNN + prediction module) is evaluated on two real-world datasets, with competitive results on one, and improved performance on the other compared with previous methods. Source code is freely available at https://github.com/kanz76/GMPNN-CS.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Software , Drug Interactions , Humans , Neural Networks, Computer
19.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-33951725

ABSTRACT

A major concern with co-administration of different drugs is the high risk of interference between their mechanisms of action, known as adverse drug-drug interactions (DDIs), which can cause serious injuries to the organism. Although several computational methods have been proposed for identifying potential adverse DDIs, there is still room for improvement. Existing methods are not explicitly based on the knowledge that DDIs are fundamentally caused by chemical substructure interactions instead of whole drugs' chemical structures. Furthermore, most of existing methods rely on manually engineered molecular representation, which is limited by the domain expert's knowledge.We propose substructure-substructure interaction-drug-drug interaction (SSI-DDI), a deep learning framework, which operates directly on the raw molecular graph representations of drugs for richer feature extraction; and, most importantly, breaks the DDI prediction task between two drugs down to identifying pairwise interactions between their respective substructures. SSI-DDI is evaluated on real-world data and improves DDI prediction performance compared to state-of-the-art methods. Source code is freely available at https://github.com/kanz76/SSI-DDI.


Subject(s)
Computational Biology , Drug Interactions , Neural Networks, Computer , Software , Structure-Activity Relationship
20.
Front Oncol ; 11: 583547, 2021.
Article in English | MEDLINE | ID: mdl-33996533

ABSTRACT

Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...