Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Food Chem ; 456: 140040, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38878539

ABSTRACT

The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.

2.
J Agric Food Chem ; 72(20): 11706-11715, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728528

ABSTRACT

In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.


Subject(s)
Alginates , Colorimetry , Polyvinyl Alcohol , Alginates/chemistry , Animals , Polyvinyl Alcohol/chemistry , Cattle , Colorimetry/methods , Anthraquinones/chemistry , Food Packaging/instrumentation , Phytochemicals/chemistry , Red Meat/analysis , Metal-Organic Frameworks/chemistry
3.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38700894

ABSTRACT

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Subject(s)
Amides , Antioxidants , Digestion , Glycoside Hydrolase Inhibitors , Plant Extracts , Zanthoxylum , alpha-Glucosidases , Zanthoxylum/chemistry , Zanthoxylum/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics , Humans , Amides/chemistry , Amides/metabolism , Amides/pharmacology , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/metabolism , Models, Biological , Phenol/metabolism , Phenol/chemistry
4.
Compr Rev Food Sci Food Saf ; 23(3): e13339, 2024 05.
Article in English | MEDLINE | ID: mdl-38578165

ABSTRACT

The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.


Subject(s)
Quantum Dots , Food Contamination/prevention & control , Food Contamination/analysis , Food Microbiology , Food Packaging/methods , Food Quality , Quantum Dots/toxicity
5.
Foods ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611406

ABSTRACT

In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.

6.
Anal Chim Acta ; 1304: 342515, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637032

ABSTRACT

Aiming for sustainable crop productivity under changing climate conditions, it is essential to develop handy models for in-situ monitoring of reactive oxygen species (ROS). Herein, this work reports a simple electrochemical sensing toward hydrogen peroxide (H2O2) for tracking crop growth status sensitized with electron-migration nanostructure. To be specific, Cu-based metal-organic frameworks (MOFs) with high HOMO energy level are designed for H2O2 reduction on account of Cu(I)/Cu(II) redox switchability. Importantly, the sensing performance is improved by electrochemically reduced graphene oxide (GO) with ready to use feature. To overcome the shortcomings of traditional liquid electrolytes, conductive hydrogel as semi-solid electrolyte exhibits the adhesive property to the cut plant petiole surface. Benefitting from the preferred composite models and conductive hydrogel, the electrochemical sensing toward H2O2 with high sensitivity and good anti-interference against the coexistent molecules, well qualified for acquiring plant growth status.

7.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Article in English | MEDLINE | ID: mdl-38521333

ABSTRACT

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Subject(s)
Anti-Bacterial Agents , Glucans , Gum Arabic , Nanofibers , Nanofibers/chemistry , Glucans/chemistry , Glucans/pharmacology , Gum Arabic/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salvia/chemistry , Lactobacillus delbrueckii , Probiotics/chemistry , Animals , Food Preservation/methods , Red Meat/microbiology , Staphylococcus aureus/drug effects , Plant Mucilage/chemistry , Escherichia coli/drug effects , Cattle , Food Packaging/methods
8.
Int J Biol Macromol ; 265(Pt 1): 130466, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432274

ABSTRACT

A novel colorimetric aerogel was developed by the complexation of carboxymethyl cellulose (CMC), sodium alginate (SA), and black goji anthocyanin (BGA) followed by freeze-drying for monitoring fish (Coho salmon) freshness during storage at 4 °C and 25 °C. The various aerogels (C/S/B3:1, C/S/B2:1, C/S/B1:1, C/S/B1:2, and C/S/B1:3) externally and internally were characterized using SEM, FTIR, XRD, DSC, and TGA. Among them, the aerogel composite C/S/B1:2 exhibited the most uniform pore size, largest specific surface area, rapid color changes in various alkaline vapors (5 µM and 50 µM), and better mechanical strength. Furthermore, the colorimetric aerogel became dark blue from light purple during fish storage at temperatures of 4 °C and 25 °C when it reached pH 7.49 and 7.33, TVC 8.9 × 107 CFU/g and 8.5 × 107 CFU/g, and TVB-N 33.8 mg/100 g and 26.12 mg/100 g, respectively, indicating fish completely deteriorated. Taken together, the colorimetric aerogel composite C/S/B1:2 was promising for determining fish freshness, which could be utilized as a non-destructive and useful intelligent sensor in monitoring various fish and meat freshness and/or quality.


Subject(s)
Alginates , Carboxymethylcellulose Sodium , Animals , Carboxymethylcellulose Sodium/chemistry , Anthocyanins/chemistry , Colorimetry , Food Packaging
9.
Food Chem ; 447: 138663, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38489878

ABSTRACT

The combination of carbon dots (CDs) with covalent organic frameworks (COFs) was used to design an innovative sensor based on fluorescence resonance energy transfer (FRET) for the detection of Escherichia coli O157:H7 (E. coli O157:H7) in food samples. Carbon dots were used as fluorescence donors, covalent organic frameworks as fluorescence acceptors. The antibody (Ab) specific to E. coli O157:H7 was used to form a CD-Ab-COF immunosensor by linking CDs and COFs. The antibody was specifically bound with E. coli O157:H7, which caused the connection between CDs and COFs to be interrupted, and the carbon dots exhibited fluorescence restoration. The sensor exhibited a linear detection range spanning from 0 to 106 CFU/mL, with the limit of detection (LOD) of 7 CFU/mL. The analytical performance of the developed immunosensor was evaluated using spiked food samples with different concentrations of E. coli O157:H7, validating the capability of assessing risks in food testing.


Subject(s)
Biosensing Techniques , Escherichia coli O157 , Metal-Organic Frameworks , Fluorescence Resonance Energy Transfer , Carbon , Immunoassay , Antibodies
10.
Foods ; 13(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338639

ABSTRACT

Accurate assessment of dough kneading is pivotal in pasta processing, where both under-kneading and over-kneading can detrimentally impact dough quality. This study proposes an innovative approach utilizing a cost-effective current sensor to ascertain the optimal kneading time for dough. Throughout the kneading process, the dough's tensile resistance gradually increases, reflecting the evolution of properties such as the gluten network. This leads to a discernible ascending phase in dough quality, evident through an increase in the load current of the mixing machine, succeeded by a subsequent decline beyond a certain threshold. The identification of this peak point enables the achievement of optimal dough consistency, thereby enhancing the overall quality of both the dough and subsequent pasta products. After the final product quality assessment, this novel method promises to be a valuable tool in optimizing pasta processing and ensuring consistent product quality.

11.
Anal Chim Acta ; 1292: 342199, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309856

ABSTRACT

In this study, a bimetallic surfaced-enhanced Raman spectroscopy (SERS)-active substrate consisting of AuNR@AgNCs was proposed for the rapid detection of dithianon. Due to the significant synergistic enhancement of the core-shell nanocuboids, the obtained AuNR@AgNC substrate exhibited excellent SERS performance. The simulation findings supported the practical SERS results and demonstrated that interactions were mainly maintained by the nitrile functional group. The AuNR@AgNCs could be used to detect dithianon with an LOD value of 20 nM. Moreover, dithianon in river water and apple juice could be detected with recovery in the satisfactory ranges of 97.41%-98.35% and 97.77%-98.70%, respectively, by using this substrate under optimal conditions, indicating that the AuNR@AgNC substrate could serve as an excellent SERS detection platform for pesticide residues in fruit.


Subject(s)
Malus , Metal Nanoparticles , Pesticide Residues , Spectrum Analysis, Raman/methods , Malus/chemistry , Pesticide Residues/analysis , Fruit/chemistry , Fruit and Vegetable Juices , Gold/chemistry , Metal Nanoparticles/chemistry
12.
Food Chem ; 445: 138699, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38359566

ABSTRACT

This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.


Subject(s)
Oryza , Plasma Gases , Oryza/chemistry , Argon , Lipase/metabolism , Lipoxygenases/metabolism
13.
Food Chem ; 444: 138467, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38309078

ABSTRACT

Packaging plays an important role in protecting food from environmental impacts. However, traditional petroleum-based packaging has difficulty in meeting the antimicrobial and antioxidant requirements of prepared foods. This study introduced carbon dots (CDs), prepared by using carrot as a precursor, into corn starch (CS) to construct a bio-friendly composite film with high freshness retention properties. The scavenging of DPPH radicals reached 92.77 % at a CDs concentration of 512 µg/mL, and the antimicrobial activity of CS/5% CDs against Escherichia coli and Staphylococcus aureus was increased to 99.9 %. Notably, the homogeneous doping of CDs creates a dense surface and high carbon content inside the film, which promotes the elasticity and thermal stability of the composite film. Finally, we encapsulated deep-fried meatballs in CS-CDs films. The results showed that the CS-CDs films effectively protected the quality of deep-fried meatballs, and have excellent potential for application in food preservation.


Subject(s)
Anti-Infective Agents , Chitosan , Food Packaging/methods , Zea mays , Starch/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry
14.
Foods ; 13(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38254550

ABSTRACT

As a traditional Chinese dish cutting technology process, Gaidao artificially create cuts embedded in the food surface by cutting through it with knife, a process that currently plays an important role in the beef marinating process. And different Gaidao processes directly affect the beef marination flavour and marination efficiency. This study is the first to propose the use of Hyperspectral imaging technology (HSI) combined with finite element analysis to investigate the effect of Gaidao process on the quality of marinated beef. The study was carried out by collecting spectral information of beef marinated with different sucrose concentrations and combining various pre-processing methods and algorithms such as PLS, BiPLS, iPLS, and SiPLS to establish a quantitative model of sucrose concentration in beef, and finally optimizing parameters such as the length, position and number of Gaidao by Finite Element Analysis (FEA), which showed that when marinated with 1.0 mol/m³ sucrose solution, the concentration of sucrose in all tissues in the Gaidao steak reached 0.8 mol/m³ and above, which greatly improved the diffusion effect of the marinade. This work provides new ideas and methods to optimize the beef marinade Gaidao process, which has important practical value and research significance.

15.
Biosens Bioelectron ; 248: 115947, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181518

ABSTRACT

Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Food Analysis
16.
Food Chem ; 441: 138345, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38185049

ABSTRACT

Advances in flexible SERS substrates has made it possible to approach the ultimate goal of rapid in-situ monitoring of fruit and vegetable safety, but its vulnerability under laser ablation results in low utilization. In order to solve this problem, a 3D framework of TiO2-doped PVDF\PVP polymer was utilized to self-assemble gold-silver core-shell nanorods (Au@Ag NRs) to prepare a flexible SERS substrate with good physical stability and self-cleaning properties. This substrate showed excellent detection limit and recyclability after the detection of three pesticide residues in apple peel. The LOD of methyl-parathion (MP) was as low as 0.037 ng/cm2, with an RSD of 5.61 % for 5 cycle-detection. The recoveries of two additional pesticides thiram (TMTD) and chlorpyrifos (CPF) were 86.32 %-112.47 %. We hoped that this research will contribute to providing a recyclable and facile method for in-situ analysis of fruit and vegetable surface residues and functional manufacture of flexible SERS substrates.


Subject(s)
Malus , Metal Nanoparticles , Pesticide Residues , Pesticides , Malus/chemistry , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Pesticides/analysis , Pesticide Residues/analysis , Thiram/analysis , Vegetables/chemistry , Gold/chemistry
17.
Food Chem ; 442: 138312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219562

ABSTRACT

Herein, a bifunctional electrochemical biosensor based on the DNA tetrahedral scaffolds (TDNs) was proposed, OTA@TDNs and AFB1@TDNs were adopted for electrochemical signal output in response to OTA and AFB1 concentration, simultaneously. In order to increase the conductivity of the biosensor, highly porous gold (HPG) was loaded on electrode surface by pulse electrodeposition. Under optimal conditions, the PFc displayed a linear range with AFB1 concentration between 0.05 âˆ¼ 360 ng·mL-1 with the LOD of 3.5 pg·mL-1. And the PMB selective and sensitive responses to OTA are achieved with a linear range of 0.05 âˆ¼ 420 ng·mL-1 and a LOD of 2.4 pg·mL-1. This biosensor has high sensitivity, selectivity and stability for OTA and AFB1 detection in peanut samples. The approach streamlines the experimental procedure, leading to significantly improve the detection efficiency of mycotoxins. Collectively, this method suggest a novel approach for the detection and monitoring of OTA and AFB1 in food sample.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Ochratoxins/analysis , Aflatoxin B1/analysis , Food Contamination/analysis , DNA , Limit of Detection , Electrochemical Techniques
18.
Food Chem ; 439: 137978, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38048663

ABSTRACT

The development of an analytical method for assessing pungency intensity and determining geographical origins is crucial for evaluating the quality of visually similar Zanthoxylum bungeanum pericarp (PZB). This study analyzed 210 PZB samples from 14 origins across China, focusing on origin adulteration identification and pungency intensity using a combination of differential pulse voltammetry (DPV) and machine learning algorithms. The artificial neural network (ANN) and K-nearest neighbor (KNN) algorithms provided the highest accuracy in origin identification (100 %) and adulteration detection (97.9 %) respectively. Moreover, the ANN excelled in predicting pungency intensity (R2 = 0.918). Assessment via feature importance analysis of DPV features revealed that segments of polyphenols (0.34-0.52 V and 1.0-1.2 V) and alkylamides (1.0-1.2 V) contributed significantly to the PZB pungency intensity. These findings highlight the potential of DPV as a reliable method for assessing the quality of PZB, and offer a promising solution for ensuring the geographical authenticity of this important crop.


Subject(s)
Capsicum , Zanthoxylum , Algorithms , Neural Networks, Computer , Machine Learning
19.
Foods ; 12(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38137324

ABSTRACT

In this study, a composite film was created with the dual goal of prolonging pork shelf life and showing freshness. Hydrogel materials as solid base films were selected from gelatin (G), sodium alginate (SA) and carboxymethyl cellulose (CMC) based on their antioxidant activity, water vapor permeability, mechanical properties, as well as their stability, antimicrobial activity, and freshness, which indicates effectiveness when combined with anthocyanins. Furthermore, the effects of several concentrations of red cabbage anthocyanin (R) (3%, 6%, 12%, and 24%) on freshness indicators and bacteriostasis were investigated. The antimicrobial activity of the composite films was evaluated against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Likewise, the freshness indicates effectiveness was evaluated for NH3. Considering the mechanical properties, antibacterial ability, freshness indicator effect, and stability of the composite film, CS film combined with 12% R was selected to prepare a dual-functional intelligent film for pork freshness indicator and preservation. By thoroughly investigating the effect of composite film on pork conservation and combining with it KNN, the discriminative model of pork freshness grade was established and the recognition rate of the prediction set was up to 93.3%. These results indicated that CSR film can be used for the creation of active food packaging materials.

20.
Mikrochim Acta ; 190(12): 472, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37987841

ABSTRACT

A new surface-enhanced Raman spectroscopy (SERS) biosensor of Graphene@Ag-MLF composite structure has been fabricated by loading AgNPs on graphene films. The response of the biosensor is  based on plasmonic sensing. The results showed that the enhancement factor of three different spores reached 107 based on the Graphene@Ag-MLF substrate. In addition, the SERS performance was stable, with good reproducibility (RSD<3%). Multivariate statistical analysis and chemometrics were used to distinguish different spores. The accumulated variance contribution rate was up to 96.35% for the top three PCs, while HCA results revealed that the spectra were differentiated completely. Based on optimal principal components, chemometrics of KNN and LS-SVM were applied to construct a model for rapid qualitative identification of different spores, of which the prediction set and training set of LS-SVM achieved 100%. Finally, based on the Graphene@Ag-MLF substrate, the LOD of three different spores was lower than 102 CFU/mL. Hence, this novel Graphene@Ag-MLF SERS substrate sensor was rapid, sensitive, and stable in detecting spores, providing strong technical support for the application of SERS technology in food safety.


Subject(s)
Graphite , Spores, Bacterial , Reproducibility of Results , Spectrum Analysis, Raman , Chemometrics
SELECTION OF CITATIONS
SEARCH DETAIL
...