Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 237: 115529, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37480788

ABSTRACT

The measurement of tumor biomarker levels is of great significance for early diagnosis of breast cancer. The combination diagnosis of multiple tumor biomarkers will significantly improve the accuracy of early diagnosis. Here, we successfully developed a dual-ratio fluorescent sensing platform for the detection of breast cancer biomarkers (PTK7, miRNA-21) using single excitation triple-signal detection. Introducing three types of fluorescence nanomaterials with narrow emission peaks and long Stokes shift as signal markers, the three peaks (430 nm, 530 nm and 640 nm) of which do not interfere with each other in fluorescence spectra under a single excitation (360 nm). The sensing platform linked aptamer (apt) modified green fluorescence quantum dots (gQDs-apt1) and aptamer modified red fluorescence quantum dots (rQDs-apt2) to Fe3O4-cDNA1 and Fe3O4-cDNA2, respectively, via base complementary pairing with aptamer molecules. When PTK7/miRNA-21 is present in the system, gQDs-apt1/rQDs-apt2 bound to the Fe3O4 MNPs surface will be released to recover fluorescence. Upon DNase I digestion of free apt1 and apt2, the target molecules will be released to bind to gQDs-apt1/rQDs-apt2 for signal amplification. After magnetic separation, PTK7 and miRNA-21 can be quantified using the fluorescence intensity ratio of gQDs with bCDs and rQDs with bCDs at a single excitation of 360 nm wavelength. This method has high sensitivity, good selectivity, and can quantify both PTK7 and miRNA-21 simultaneously with an LOD of 0.426 ng mL-1 and 0.072 nM, respectively. Additionally, the sensing platform was used for serum detection of health man and breast cancer patients with satisfactory results.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Breast Neoplasms , MicroRNAs , Quantum Dots , Humans , Female , Fluorescent Dyes , Early Detection of Cancer , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Biomarkers, Tumor , Cell Adhesion Molecules , Receptor Protein-Tyrosine Kinases
2.
Talanta ; 254: 124139, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36470013

ABSTRACT

Tyrosine protein kinase 7 (PTK7) is overexpressed in breast cancer, which is considered as a cancer marker for breast cancer diagnosis. Therefore, a simple fluorescent probe for PTK7 detection and cell imaging was developed. In the developed probe, Fe3O4 magnetic nanoparticles were used as the fluorescent separator, and the fluorescence of carbon dots were used as the detection signal. The probe was worked by control the configurations of the aptamer of PTK7, the aptamer would be open chains by recognition of PTK7, which bond with carbon dots and show fluorescent signal. Based on the remarkably high affinity and selectivity of aptamer for PTK7, the excellent fluorescence property of carbon dots and the outstanding magnetism of Fe3O4 magnetic nanoparticles, the developed probe showed satisfied results for PTK7 detection in serum and MCF-7 cell imaging. The probe detected PTK7 in the range of 0.2-200 ng mL-1 with a detection limit of 0.0347 ng mL-1, and successfully imaged the cancer cell expressed PTK7. The results indicate that the nano-fluorescent probe has great potential for clinical applications.


Subject(s)
Breast Neoplasms , Fluorescent Dyes , Humans , Female , Fluorescent Dyes/chemistry , MCF-7 Cells , Protein-Tyrosine Kinases , Carbon , Cell Adhesion Molecules/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
3.
RSC Adv ; 12(46): 30113-30119, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36329933

ABSTRACT

In this study, a sensitive ratiometric fluorescent nanosensor was constructed using a facile one-pot method by encapsulating carbon dots (CDs) and cadmium telluride quantum dots (CdTe QDs) into the pore cavities of a metal-organic framework (ZIF-8). In this nanosensor (CD/CdTe QD@ZIF-8), the fluorescence attributed to CdTe QDs was quenched by silver ions (Ag+), and the fluorescence intensity of CDs did not change. The introduction of ZIF-8 into the system can not only adsorb Ag+ but also easily separate CDs and CdTe QDs from the matrix. The developed CD/CdTe QD@ZIF-8 composite used as a ratiometric fluorescent probe exhibited high sensitivity and selectivity towards Ag+. The working linear range was 0.1-20 µM with a limit of detection (LOD) of 1.49 nM. Finally, the proposed nanosensor was applied to determine Ag+ in lake water with satisfactory results.

4.
Environ Sci Technol ; 56(20): 14478-14486, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36173086

ABSTRACT

The photocatalytic O2 activation for pollutant removal highly depends on the controlled generation of desired reactive oxygen species (ROS). Herein, we demonstrate that the robust excitonic effect of BiOBr nanosheets, which is prototypical for singlet oxygen (1O2) production to partially oxidize NO into a more toxic intermediate NO2, can be weakened by surface boronizing via inducing a staggered band alignment from the surface to the bulk and simultaneously generating more surface oxygen vacancy (VO). The staggered band alignment destabilizes excitons and facilitates their dissociation into charge carriers, while surface VO traps electrons and efficiently activates O2 into a superoxide radical (•O2-) via a one-electron-transfer pathway. Different from 1O2, •O2- enables the complete oxidation of NO into nitrate with high selectivity that is more desirable for safe indoor NO remediation under visible light irradiation. This study provides a facile excitonic effect manipulating method for layered two-dimensional photocatalysts and sheds light on the importance of managing ROS production for efficient pollutant removal.


Subject(s)
Environmental Pollutants , Nitrates , Bismuth , Catalysis , Light , Nitrogen Dioxide , Oxygen , Reactive Oxygen Species , Singlet Oxygen , Superoxides
5.
Rev Sci Instrum ; 93(6): 065003, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778009

ABSTRACT

Some human exhaled volatile organic compounds (VOCs) can be employed to diagnose related human endogenous diseases as characteristic biomarkers, which is expected to be applied to rapid screening and grading because of their non-invasive and cost-effective advantages. In this study, we developed a compact gas chromatography (GC) platform mainly composed of an integrated silicon-based micro-column chip using micro-electromechanical system techniques and a miniaturized metal oxide semiconductor gas detector. In addition, the sampling/switching valve with related components and embedded microcontrollers was used for airflow control. The fabricated system selectively detected the five VOCs (pentane, acetone, toluene, octane, and decane) considered the typical endogenous disease biomarkers. In the experiments, the functional parameters of the system were investigated, and the optimum temperature conditions of the system for separation were determined. The results show that the system can successfully test the studied five VOCs as low as 1 ppm. In addition, the influence of interfering gas (carbon dioxide and ammonia) on the system for the VOC mixture is also investigated. Moreover, to prove the possibility of breath analysis of the fabricated system, the detection performance of isoprene and acetone at the ppb level is studied. Then, the concentration changes of the isoprene at the ppb concentration for human breath are successfully detected in the system. Therefore, we believe that the prepared compact GC system has potential applications in the human endogenous disease diagnosis for the VOC biomarkers.


Subject(s)
Volatile Organic Compounds , Acetone/analysis , Biomarkers , Breath Tests , Chromatography, Gas , Humans , Volatile Organic Compounds/analysis
6.
Adv Mater ; 33(38): e2100143, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34331321

ABSTRACT

The objective of photocatalytic CO2 reduction (PCR) is to achieve high selectivity for a single energy-bearing product with high efficiency and stability. The bulk configuration usually determines charge carrier kinetics, whereas surface atomic arrangement defines the PCR thermodynamic pathway. Concurrent engineering of bulk and surface structures is therefore crucial for achieving the goal of PCR. Herein, an ultrastable and highly selective PCR using homogeneously doped BiOCl nanosheets synthesized via an inventive molten strategy is presented. With B2 O3 as both the molten salt and doping precursor, this new doping approach ensures boron (B) doping from the surface into the bulk with dual functionalities. Bulk B doping mitigates strong excitonic effects confined in 2D BiOCl by significantly reducing exciton binding energies, whereas surface-doped B atoms reconstruct the BiOCl surface by extracting lattice hydroxyl groups, resulting in intimate B-oxygen vacancy (B-OV) associates. These exclusive B-OV associates enable spontaneous CO2 activation, suppress competitive hydrogen evolution and promote the proton-coupled electron transfer step by stabilizing *COOH for selective CO generation. As a result, the homogeneous B-doped BiOCl nanosheets exhibit 98% selectivity for CO2 -to-CO reduction under visible light, with an impressive rate of 83.64 µmol g-1 h-1 and ultrastability for long-term testing of 120 h.

7.
J Nanobiotechnology ; 19(1): 47, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588855

ABSTRACT

BACKGROUND: Protein tyrosine kinase 7 (PTK 7) is a membrane receptor, which can be found in various kinds of cancers. In view of this, detection of PTK 7 in the peripheral circulation would be an effective way for the early diagnosis of cancer. RESULTS: In this work, a multi-carbon dots and aptamer-based signal amplification ratiometric fluorescence probe was developed. The fluorescence of the aptamer-modified y-CDs and b-CDs were respectively chosen as the detection signal and interior label. The fluorescence of y-CDs was quenched by Fe3O4 and cDNA (complement to aptamer) compound without PTK 7, but recovered by the addition of PTK 7. Then, the free aptamer was cut by DNase I, which amplified the detection signal. The ratiometric fluorescence sensor for PTK 7 was established with the LOD of 0.016 ng mL-1. CONCLUSIONS: Summary, a multi-carbon dots and aptamer-based signal amplification ratiometric fluorescence probe was developed for the detection of protein tyrosine kinase 7. The developed probe was applied to PTK 7 detection in MCF-7 cells and human serum with satisfying results, thus indicating that this probe has huge potential in clinical practice.


Subject(s)
Carbon/chemistry , Fluorescence , Fluorescent Dyes , Protein-Tyrosine Kinases/isolation & purification , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Humans , MCF-7 Cells , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL
...