Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12944, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839875

ABSTRACT

Locomotor preferences and habitat types may drive animal evolution. In this study, we speculated that locomotor preference and habitat type may have diverse influences on Bovidae mitochondrial genes. We used selection pressure and statistical analysis to explore the evolution of mitochondrial DNA (mtDNA) protein-coding genes (PCGs) from diverse locomotor preferences and habitat types. Our study demonstrates that locomotor preference (energy demand) drives the evolution of Bovidae in mtDNA PCGs. The habitat types had no significant effect on the rate of evolution in Bovidae mitochondrial genes. Our study provides deep insight into the adaptation of Bovidae.


Subject(s)
DNA, Mitochondrial , Evolution, Molecular , Genes, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Locomotion/genetics , Selection, Genetic , Ecosystem , Phylogeny
2.
Animals (Basel) ; 14(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791655

ABSTRACT

The two existing clades of Galloanseres, orders Galliformes (landfowl) and Anseriformes (waterfowl), exhibit dramatically different evolutionary trends. Mitochondria serve as primary sites for energy production in organisms, and numerous studies have revealed their role in biological evolution and ecological adaptation. We assembled the complete mitogenome sequences of two species of the genus Aythya within Anseriformes: Aythya baeri and Aythya marila. A phylogenetic tree was constructed for 142 species within Galloanseres, and their divergence times were inferred. The divergence between Galliformes and Anseriformes occurred ~79.62 million years ago (Mya), followed by rapid evolution and diversification after the Middle Miocene (~13.82 Mya). The analysis of selective pressure indicated that the mitochondrial protein-coding genes (PCGs) of Galloanseres species have predominantly undergone purifying selection. The free-ratio model revealed that the evolutionary rates of COX1 and COX3 were lower than those of the other PCGs, whereas ND2 and ND6 had faster evolutionary rates. The CmC model also indicated that most PCGs in Anseriformes exhibited stronger selective constraints. Our study suggests that the distinct evolutionary trends and energy requirements of Galliformes and Anseriformes drive different evolutionary patterns in the mitogenome.

3.
BMC Genomics ; 24(1): 507, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37648967

ABSTRACT

BACKGROUND: The Mongolian gazelle (Procapra gutturosa) population has shown a considerable range of contractions and local extinctions over the last century, owing to habitat fragmentation and poaching. A thorough understanding of the genetic diversity and structure of Mongolian gazelle populations in fragmented habitats is critical for planning effective conservation strategies. RESULT: In this study, we used eight microsatellite loci and mitochondrial cytochrome b (Cytb) to compare the levels of genetic diversity and genetic structure of Mongolian gazelle populations in the Hulun Lake National Nature Reserve (HLH) with those in the China-Mongolia border area (BJ). The results showed that the nucleotide diversity and observed heterozygosity of the HLH population were lower than those of the BJ population. Moreover, the HLH and BJ populations showed genetic differentiation. We concluded that the HLH population had lower genetic diversity and a distinct genetic structure compared with the BJ population. CONCLUSION: The genetic diversity of fragmented Mongolian gazelle populations, can be improved by protecting these populations while reinforcing their gene exchange with other populations. For example, attempts can be made to introduce new individuals with higher genetic diversity from other populations to reduce inbreeding.


Subject(s)
Antelopes , Humans , Animals , Antelopes/genetics , China , Cytochromes b/genetics , Genetic Drift , Genetic Variation
4.
Sci Data ; 10(1): 254, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142629

ABSTRACT

Aythya marila is one of the few species of Anatidae, and the only Aythya to live in the circumpolar. However, there is a relative lack of research on genetics of this species. In this study, we reported and assembled the first high-quality chromosome-level genome assembly of A. marila. This genome was assembled using Nanopore long reads, and errors corrected using Illumina short reads, with a final genome size of 1.14 Gb, scaffold N50 of 85.44 Mb, and contig N50 of 32.46 Mb. 106 contigs were clustered and ordered onto 35 chromosomes based on Hi-C data, covering approximately 98.28% of the genome. BUSCO assessment showed that 97.0% of the highly conserved genes in aves_odb10 were present intact in the genome assembly. In addition, a total of 154.94 Mb of repetitive sequences were identified. 15,953 protein-coding genes were predicted in the genome, and 98.96% of genes were functionally annotated. This genome will be a valuable resource for future genetic diversity and genomics studies of A. marila.


Subject(s)
Anseriformes , Genome , Genomics , Chromosomes/genetics , Molecular Sequence Annotation , Phylogeny , Repetitive Sequences, Nucleic Acid , Anseriformes/genetics
5.
Animals (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36830518

ABSTRACT

The gastrointestinal tract of animals contains microbiota, forming a complex microecosystem. Gut microbes and their metabolites can regulate the development of host innate and adaptive immune systems. Animal immune systems maintain intestinal symbiotic microbiota homeostasis. However, relatively few studies have been published on reptiles, particularly snakes, and even fewer studies on different parts of the digestive tracts of these animals. Herein, we used 16S rRNA gene sequencing to investigate the microbial community composition and adaptability in the stomach and small and large intestines of Lycodon rufozonatus. Proteobacteria, Bacteroidetes, and Firmicutes were most abundant in the stomach; Fusobacteria in the small intestine; and Proteobacteria, Bacteroidetes, Fusobacteria, and Firmicutes in the large intestine. No dominant genus could be identified in the stomach; however, dominant genera were evident in the small and large intestines. The microbial diversity index was significantly higher in the stomach than in the small and large intestines. Moreover, the influence of the microbial community structure on function was clarified through function prediction. Collectively, the gut microbes in the different segments of the digestive tract revealed the unique features of the L. rufozonatus gut microbiome. Our results provide insights into the co-evolutionary relationship between reptile gut microbiota and their hosts.

6.
Animals (Basel) ; 12(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36552492

ABSTRACT

The species living in the Qinghai-Tibet Plateau provide an excellent model system for studying the relationship between molecular convergent evolution and adaptation. Distant species experiencing the same selection pressure (i.e., hypoxia, low temperature and strong ultraviolet radiation) are likely to evolve similar genetic adaptations independently. Here, we performed comparative genomics studies on six independently evolved high-altitude species. The results also showed that the convergent evolution of the six species was mainly reflected at the level of rapidly evolving genes, and the functions of these rapidly evolving genes were mainly related to hypoxia response and DNA damage repair. In addition, we found that high-altitude species had more gene family changes than their low-altitude relatives, except for the order Lagomorpha. The results also show that the convergence of the gene family contraction of high-altitude species is much greater than that of expansion, revealing a possible pattern of species in adapting to high-altitude. Furthermore, we detected a positive selection signature in four genes related to hypoxia response and ultraviolet radiation damage in these six species (FYCO1, ERBIN, SCAMP1 and CXCL10). Our study reveals that hypoxia response might play an important role in the adaptation of independently evolved species to a high-altitude environment, providing a basic perspective for further exploring the high-altitude adaptation mechanism of different related species in the future.

7.
Animals (Basel) ; 12(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36428316

ABSTRACT

American mink fur is an important economic product, but the molecular mechanisms underlying its color formation and fur development remain unclear. We used RNA-seq to analyze the skin transcriptomes of young and adult mink with two different hair colors. The mink comprised black adults (AB), white adults (AW), black juveniles (TB), and white juveniles (TW) (three each). Through pair comparison and cross-screening among different subgroups, we found that 13 KRTAP genes and five signaling pathways (the JAK-STAT signaling pathway (cfa04630), signaling pathways regulating pluripotency of stem cells (cfa04550), ECM-receptor interaction (cfa04512), focal adhesion (cfa04510), and the Ras signaling pathway (cfa04014)) were related to mink fur development. We also found that members of a tyrosinase family (TYR, TYRP1, and TYRP2) are involved in mink hair color formation. The expression levels of TYR were higher in young black mink than in young white mink, but this phenomenon was not observed in adult mink. Our study found significant differences in adult and juvenile mink skin transcriptomes, which may shed light on the mechanisms of mink fur development. At the same time, the skin transcriptomes of black and white mink also showed differences, with the results varying by age, suggesting that the genes regulating hair color are active in early development rather than in adulthood. The results of this study provide molecular support in breeding for mink coat color and improving fur quality.

8.
Animals (Basel) ; 12(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139245

ABSTRACT

Although the American mink is extremely dependent on water and has evolved a range of aquatic characteristics, its structural adaptation to water is still less obvious than that of other typical semi-aquatic mammals, such as otters. Therefore, many scholars consider it not to be a semi-aquatic mammal. In order to make the point that minks are semi-aquatic mammals more convincing, we provide evidence at the micro (genome)-level. In particular, we used the genomes of the American mink and 13 mammalian species to reconstruct their evolutionary history, identified genes that affect aquatic adaptation, and examined the evolution of aquatic adaptation. By analyzing unique gene families, the expansion and contraction of gene families, and positive selection genes, we found that the American mink genome has evolved specifically for aquatic adaptation. In particular, we found that the main adaptive characteristics of the American mink include the external structural characteristics of bone and hair development, as well as the internal physiological characteristics of immunity, olfaction, coagulation, lipid metabolism, energy metabolism, and nitrogen metabolism. We also observed that the genomic characteristics of the American mink are similar to those of other aquatic and semi-aquatic mammals. This not only provides solid genomic evidence for the idea that minks are semi-aquatic mammals, but also leads to a clearer understanding of semi-aquatic species. At the same time, this study also provides a reference for the protection and utilization of the American mink.

9.
Front Microbiol ; 13: 830321, 2022.
Article in English | MEDLINE | ID: mdl-35369477

ABSTRACT

The existence of man-made facilities such as pasture fences makes the grassland ecosystem fragmented and endangers the survival of local wild animals. The Mongolian gazelle is highly sensitive to hunting and habitat destruction, and is one of the most threatened artiodactyls in Eurasia. It provides a critical model to studying gut microbiota under fragmented habitats. Therefore, we applied metagenomics sequencing to analyze the gut microbiota communities and functions of Mongolian gazelle under fragmented habitats. The results demonstrated that there were no significant differences in gut microbial communities between the different groups at both the phylum and genus level. The functional analyses showed that the Mongolian gazelle in fragmented habitat had a stronger ability to degrade naphthalene, but their ability to absorb carbohydrates was weaker. This study provided fundamental information about the gut microbiota of Mongolian gazelle, and we recommend reducing habitat fragmentation to better protect the Mongolian gazelle.

11.
Sci Rep ; 11(1): 19162, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580368

ABSTRACT

As the main digestive organ, the small intestine plays a vital role in the digestion of animals. At present, most of the research on animal feeding habits focuses on carnivores and herbivores. However, the mechanism of feeding and digestion in omnivores remains unclear. This study aims to reveal the molecular basis of the omnivorous adaptive evolution of Melinae by comparing the transcriptome of the small intestines of Asian Badgers (Meles leucurus) and Northern Hog Badgers (Arctonyx albogularis). We obtained high-quality small intestinal transcriptome data from these two species. Key genes and signalling pathways were analysed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and other databases. Research has mainly found that orthologous genes related to six enzymes have undergone adaptive evolution. In addition, the study also found three digestion-related pathways (cGMP-PKG, cAMP, and Hippo). They are related to the digestion and absorption of nutrients, the secretion of intestinal fluids, and the transport of food through the small intestine, which may help omnivorous animals adapt to an omnivorous diet. Our study provides insight into the adaptation of Melinae to omnivores and affords a valuable transcriptome resource for future research.


Subject(s)
Diet , Intestine, Small/metabolism , Mustelidae/genetics , Mustelidae/metabolism , Adaptation, Physiological , Animals , Digestion/genetics , Signal Transduction , Transcriptome
12.
Ecol Evol ; 10(7): 3439-3449, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274000

ABSTRACT

The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.

13.
Mitochondrial DNA B Resour ; 4(2): 3702-3704, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-33366151

ABSTRACT

In this study, the complete mitochondrial genome of Leuciscus waleckii waleckii was sequenced and got a whole length of 16605 bp. This genome was contain 2 rRNA, 22 tRNA, 13 protein-coding genes, 1 control region (D-loop) and 1 replication origin. And the nucleotide composition of this mitochondrial genome is 27.72% for A, 26.28% for T, 27.23% for C and 18.77% for G. To clarify the phylogenetic relationship of the Leuciscus waleckii waleckii, we concluded the phylogenetic tree using 12 PCGs (except ND6) of mitochondrial genome in Leuciscus waleckii waleckii and 16 other cyprinid fish by Bayesian inference (BI) methods and maximum-likelihood (ML). And the result show that Leuciscus waleckii waleckii was close to other Leuciscus species, especially Leuciscus baicalensis.

SELECTION OF CITATIONS
SEARCH DETAIL
...