Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 22(1): 205, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093288

ABSTRACT

BACKGROUND: Targeted drugs are not quite effective for prolonging the survival of patients with gastric cancer due to off-target effects as well as tumor immune escape mechanisms. Circular RNAs widely exist in tumor regions as biomarkers and can be developed as effective drug targets. METHODS: Western blot, QRT-PCR, fluorescence in situ hybridization, and flow cytometry were used to investigate the function of hsa_circ_0136666 in promoting the proliferation of gastric cancer cells. Tissue immunofluorescence, enzyme-linked immunosorbent assay (ELISA), as well as flow cytometric analysis, was conducted to explore the process of tumor immune evasion in tumor-bearing mice. The differences of circRNA expression in clinical samples were analyzed through tissue microarray FISH. The effect of siRNA on improving the efficacy of anti-PDL1 drugs and suppressing the immune microenvironment was evaluated by the coadministration model. RESULTS: We demonstrated that hsa_circ_0136666 was widely and highly expressed in gastric cancer tissues and cells. Functionally, hsa_circ_0136666 promoted gastric cancer tumor proliferation and tumor microenvironment formation, leading to tumorigenesis immune escape, and this effect was dependent on CD8 + T cells. Mechanistically, we confirmed that hsa_circ_0136666 competitively upregulated PRKDC expression by sponging miR-375-3p, regulating immune checkpoint proteins, prompting phosphorylation of PD-L1 to preventing its degradation, driving PD-L1 aggregation and suppressing immune function, thereby impairing cancer immune responses. In terms of application, we found that LNP-siRNA effectively improved anti-PDL1 drug efficacy and inhibited immune escape. CONCLUSION: Our results reveal an oncogenic role played by hsa_circ_0136666 in gastric cancer, driving PD-L1 phosphorylation via the miR-375/PRKDC signaling axis, prompting immune escape. This work proposes a completely new pathogenic mechanism of gastric cancer, uncovers a novel role for hsa_circ_0136666 as an immune target, and provides a rationale for enhancing the efficacy of anti-PD-L1 therapy for gastric cancer.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/genetics , Tumor Escape/genetics , Phosphorylation , B7-H1 Antigen/genetics , In Situ Hybridization, Fluorescence , MicroRNAs/genetics , RNA, Small Interfering , Cell Proliferation , Cell Line, Tumor , Tumor Microenvironment , DNA-Activated Protein Kinase
2.
Article in English | MEDLINE | ID: mdl-37089716

ABSTRACT

Background: A major contributor to older disability is osteoarthritis. Radix Angelicae Biseratae (known as Duhuo in China, DH, the dried rhizome of Angelica pubescens) and Dipsaci Radix (known as Xuduan in China, XD, the dried rhizome of Dipsacus asper Wall) herb pair (DXHP) is widely used to treat osteoarthritis, but the underlying molecular mechanisms still have not been revealed. This research aimed to illustrate the therapeutic mechanism of DXHP against osteoarthritis through the techniques of network pharmacology and molecular docking. Methods: Gene targets for osteoarthritis and active ingredients for DXHP were screened based on the pharmacology public database and the gene-disease target database. The software program Cytoscape was used to visualize the active chemical target-disease gene network. The STRING biological information website was used to investigate protein interactions. On the Metascape bioinformatics website, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out. The molecular docking of the important chemicals and primary targets identified by the aforementioned screening was performed using Autodock software. Results: Twenty-six active substances from the DXHP that had strong connections to 138 osteoarthritis-related targets were screened out. According to network analysis, TNF, GAPDH, IL-6, AKT-1, IL-1B, and VEGFA are prospective therapeutic targets, while osthole, cauloside A, ammidin, angelicone, beta-sitosterol, and asperosaponin VI may be significant active components. 1705 biological processes (BP), 155 molecular functions (MF), and 89 cellular components (CC) were identified by GO analysis. KEGG analysis indicated that IL-17, NF-kappa B, HIF-1, MAPK, and AGE-RAGE signaling pathways are potentially involved. Molecular docking showed that cauloside A, osthole, and ß-sitosterol have excellent binding activity with main targets. Conclusions: This study comprehensively illuminated the active ingredients, potential targets, primary pharmacological effects, and relevant mechanisms of the DXHP in the treatment of OA. These findings provide fresh thoughts into the therapeutic mechanisms of the main active ingredients of DXHP and provide a reference for further exploration and clinical applications of DXHP.

3.
Front Genet ; 14: 1096616, 2023.
Article in English | MEDLINE | ID: mdl-37091797

ABSTRACT

Objective: To observe the clinical efficacy and safety of Yiqi Yangxue formula (YQYXF) on knee osteoarthritis (KOA), and to explore the underlying therapeutic mechanism of YQYXF through endogenous differential metabolites and their related metabolic pathways. Methods: A total of 61 KOA patients were recruited and divided into the treatment group (YQYXF, 30 cases) and the control group (celecoxib, Cxb, 31 cases). Effects of these two drugs on joint pain, swelling, erythrocyte sedimentation rate (ESR) and c-reactive protein (CRP) were observed, and their safety and adverse reactions were investigated. In animal experiments, 63 SD rats were randomly divided into normal control (NC) group, sham operation (sham) group, model (KOA) group, Cxb group, as well as low-dose (YL), medium-dose (YM), and high-dose groups of YQYXF (YH). The KOA rat model was established using a modified Hulth method. Ultra-high-performance liquid chromatography/Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass (UHPLC-QE-MS)-based metabolomics technology was used to analyze the changes of metabolites in plasma samples of rats. Comprehensive (VIP) >1 and t-test p < 0.05 conditions were used to screen the disease biomarkers of KOA, and the underlying mechanisms of YQYXF were explored through metabolic pathway enrichment analysis. The related markers of YQYXF were further verified by ELISA (enzyme-linked immunosorbent assay). Results: YQYXF can improve joint pain, swelling, range of motion, joint function, Michel Lequesen index of severity for osteoarthritis (ISOA) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, ESR, and CRP. No apparent adverse reactions were reported. In addition, YQYXF can improve cartilage damage in KOA rats, reverse the abnormal changes of 16 different metabolites, and exert an anti-KOA effect mainly through five metabolic pathways. The levels of reactive oxygen species (ROS) and glutathione (GSH) were significantly decreased after the treatment of YQYXF. Conclusion: YQYXF can significantly improve the clinical symptoms of KOA patients without obvious adverse reactions. It mainly improved KOA through modulating lipid metabolism-related biomarkers, reducing lipid peroxidation and oxidative stress.

4.
Front Neurol ; 14: 1128092, 2023.
Article in English | MEDLINE | ID: mdl-36908603

ABSTRACT

Falls are the main contributor to both fatal and nonfatal injuries in elderly individuals as well as significant sources of morbidity and mortality, which are mostly induced by impaired balance control. The ability to keep balance is a remarkably complex process that allows for rapid and precise changes to prevent falls with multiple systems involved, such as musculoskeletal system, the central nervous system and sensory system. However, the exact pathogenesis of falls caused by balance disorders in the elderly has eluded researchers to date. In consideration of aging phenomenon aggravation and fall risks in the elderly, there is an urgent need to explore the pathogenesis and treatments of falls caused by balance disorders in the elderly. The present review discusses the epidemiology of falls in the elderly, potential pathogenic mechanisms underlying multiple systems involved in falls caused by balance disorders, including musculoskeletal system, the central nervous system and sensory system. Meanwhile, some common treatment strategies, such as physical exercise, new equipment based on artificial intelligence, pharmacologic treatments and fall prevention education are also reviewed. To fully understand the pathogenesis and treatment of falls caused by balance disorders, a need remains for future large-scale multi-center randomized controlled trials and in-depth mechanism studies.

5.
Front Nutr ; 10: 1139558, 2023.
Article in English | MEDLINE | ID: mdl-36925964

ABSTRACT

As natural functional bioactive ingredients found in foods and plants, polyphenols play various antioxidant and anti-inflammatory roles to prevent the development of disease and restore human health. The multi-target modulation of polyphenols provides a novel practical therapeutic strategy for neurodegenerative diseases that are difficult to treat with traditional drugs like glutathione and cholinesterase inhibitors. This review mainly focuses on the efficacy of polyphenols on ischemic stroke, Parkinson's disease and Alzheimer's disease, including in vivo and in vitro experimental studies. It is further emphasized that polyphenols exert neuroprotective effects primarily through inhibiting production of oxidative stress and inflammatory cytokines, which may be the underlying mechanism. However, polyphenols are still rarely used as medicines to treat neurodegenerative diseases. Due to the lack of clinical trials, the mechanism of polyphenols is still in the stage of insufficient exploration. Future large-scale multi-center randomized controlled trials and in-depth mechanism studies are still needed to fully assess the safety, efficacy and side effects of polyphenols.

6.
Front Cell Dev Biol ; 10: 1089668, 2022.
Article in English | MEDLINE | ID: mdl-36544901

ABSTRACT

Autophagy is an intracellular degradation system that maintains the stable state of cell energy metabolism. Some recent findings have indicated that autophagy dysfunction is an important driving factor for the occurrence and development of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of damaged organelles and macromolecules in chondrocytes, which affects the survival of chondrocytes and ultimately leads to OA. An appropriate level of autophagic activation may be a new method to prevent articular cartilage degeneration in OA. This minireview discussed the mechanism of autophagy and OA, key autophagy targets regulating OA progression, and evaluated therapeutic applications of drugs targeting autophagy in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.

7.
Front Cell Neurosci ; 16: 955385, 2022.
Article in English | MEDLINE | ID: mdl-35846566

ABSTRACT

Strokes are mainly caused by thromboembolic obstruction of a major cerebral artery. Major clinical manifestations include paralysis hemiplegia, aphasia, memory, and learning disorders. In the case of ischemic stroke (IS), hyperactive platelets contribute to advancing an acute thrombotic event progression. Therefore, the principal goal of treatment is to recanalize the occluded vessel and restore cerebral blood flow by thrombolysis or mechanical thrombectomy. However, antiplatelets or thrombolytic therapy may increase the risk of bleeding. Beyond the involvement in thrombosis, platelets also contribute to the inflammatory process induced by cerebral ischemia. Platelet-mediated thrombosis and inflammation in IS lie primarily in the interaction of platelet receptors with endothelial cells and immune cells, including T-cells, monocytes/macrophages, and neutrophils. Following revascularization, intervention with conventional antiplatelet medicines such as aspirin or clopidogrel does not substantially diminish infarct development, most likely due to the limited effects on the thrombo-inflammation process. Emerging evidence has shown that T cells, especially regulatory T cells (Tregs), maintain immune homeostasis and suppress immune responses, playing a critical immunomodulatory role in ischemia-reperfusion injury. Hence, considering the deleterious effects of inflammatory and immune responses, there is an urgent need for more targeted agents to limit the thrombotic-inflammatory activity of platelets and minimize the risk of a cerebral hemorrhage. This review highlights the involvement of platelets in neuroinflammation and the evolving role of Tregs and platelets in IS. In response to all issues, preclinical and clinical strategies should generate more viable therapeutics for preventing and managing IS with immunotherapy targeting platelets and Tregs.

8.
Front Mol Neurosci ; 15: 1043018, 2022.
Article in English | MEDLINE | ID: mdl-36590912

ABSTRACT

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disease, and its diagnosis is dependent on behavioral manifestation, such as impaired reciprocal social interactions, stereotyped repetitive behaviors, as well as restricted interests. However, ASD etiology has eluded researchers to date. In the past decades, based on strong genetic evidence including mutations in a single gene, gene editing technology has become an essential tool for exploring the pathogenetic mechanisms of ASD via constructing genetically modified animal models which validates the casual relationship between genetic risk factors and the development of ASD, thus contributing to developing ideal candidates for gene therapies. The present review discusses the progress in gene editing techniques and genetic research, animal models established by gene editing, as well as gene therapies in ASD. Future research should focus on improving the validity of animal models, and reliable DNA diagnostics and accurate prediction of the functional effects of the mutation will likely be equally crucial for the safe application of gene therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...