Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Ultrasonics ; 141: 107323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692211

ABSTRACT

Cased-hole logging using ultrasonic pitch-catch modality is a proven technique for cement bond evaluation in cased holes. However, complex measuring environments such as tool and casing eccentering makes it difficult to precisely separate and pick the third interface echoes from full ultrasonic Lamb waves, leading to ambiguous identification of annulus-formation interface. To overcome this problem, we propose an improved cased-hole reverse time migration approach for ultrasonic pitch-catch measurements to image the annulus-formation interface. The missing ultrasonic Lamb waveforms between far and near receivers due to insufficient spatial sampling are reconstructed based on the optimized theoretical phase velocity of zero-order anti-symmetric Lamb mode waves. Additionally, we apply the hybrid illumination imaging condition to mitigate the imaging noises around the true reflectors and sources. Data examples from a physical experimental well and a field well demonstrate that the proposed approach is an effective method for characterizing the annulus-formation interface without requiring precise knowledge of the velocity distribution in the region behind the casing. Furthermore, test on an experimental well has indicated that the method has the potential to detect the absence of cement in the annulus medium.

2.
Huan Jing Ke Xue ; 42(9): 4366-4373, 2021 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-34414735

ABSTRACT

In order to understand the characteristics and interactions of the microbial community during the anaerobic ferric ammonium oxidation (FEAMMOX) process, this study investigated the effects of various forms of chelated iron on nitrogen removal efficiency and microbial community structure. After 77 days of reactor operation, the removal efficiency of total nitrogen was 83.32% for the ferric humate group, 43.67% for the ferric citrate group, 55.07% for the ferric sodium ethylene diamine tetraacetate group, and 12.65% for the ferric ammonium triacetate group. After the experiment, the abundance of denitrifying bacteria Comamonadaceae in ferric humate group was 17.57%, the abundance of Clostridium in ferric citrate group was 47.70%; and the abundance of denitrifying bacteria Thermomonas in the ferric sodium ethylene diamine tetraacetate group was 20.11%. This indicates that ferric humate is a more effective electron acceptor for the FEAMMOX process. The result of function prediction shows that the iron, sulfur, and nitrogen cycles are all closely related, with iron and sulfur metabolism playing an important role in nitrogen removal. In the humate group, iron respiration and the nitrogen cycle are more strongly correlated than other groups. Co-occurrence network analysis showed that the keystone species in the FEAMMOX process is Tessaracoccus.


Subject(s)
Ammonium Compounds , Microbiota , Anaerobiosis , Denitrification , Iron , Nitrogen
3.
Int J Mol Sci ; 20(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086007

ABSTRACT

Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cyclopentanes/metabolism , Oryza/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics , Signal Transduction/genetics , Signal Transduction/physiology
4.
J Inorg Biochem ; 191: 1-7, 2019 02.
Article in English | MEDLINE | ID: mdl-30445339

ABSTRACT

We herein report the synthesis, characterization, catalytic ability in converting coenzyme NADH to NAD+ and anticancer activity of half-sandwich iridium(III) complexes, [(η5-Cpxbiph)Ir(C^N)Cl]PF6-, where Cpxbiph = tetramethyl(biphenyl)cyclopentadienyl, C^N = varying imine-N-heterocyclic carbene ligands. The molecular structure of [(η5-Cpxbiph)Ir(L6)Cl]PF6 (complex Ir6), exhibiting the familiar "piano-stool" geometry, has been authenticated by X-ray crystallography. The anticancer activities of these complexes can be governed via substituent effects of three tunable domains and the ligand substituted variants offer an effective chelate ligand set that distinguishes anticancer activity and catalytic ability. Notably, complex Ir6 displays the greatest cytotoxic activities (IC50 = 0.85 µM), whose anticancer activity is more approximately 25-fold higher than that of cisplatin. The initial cell death mechanistic insight displays that this group of iridium(III) complexes exerts anticancer effects via cell cycle arrest, apoptosis induction and loss of the mitochondrial membrane potential. In addition, the confocal microscopy imaging shows that the complex Ir6 can damage lysosome. Overall, preliminary structure-activity relationships study and understanding of the cell death mechanism perhaps provide a rational strategy for enhancing anticancer activity of this family of complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Iridium/chemistry , Organic Chemicals/chemistry , A549 Cells , Apoptosis/drug effects , Cell Cycle/drug effects , Humans , Inhibitory Concentration 50 , Ligands , Lysosomes/drug effects , Membrane Potential, Mitochondrial/drug effects , NAD/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...