Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 426: 136581, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37311299

ABSTRACT

Given that food poisoning and infectious diseases caused by Salmonella typhimurium (S. typhimurium) draw intensive public health concerns, developing rapid, accurate, and cost-effective approaches to detect the pathogen is of crucial importance. Herein, we proposed a concanavalin A (Con A)-aptamer joint strategy to realize dual recognition for the strongly specific, visual, and highly sensitive determination of S. typhimurium. Compared with currently used single identification strategies, Con A and aptamer could recognize different sites of S. typhimurium to enhance the utilization rate of these sites for better sensing. The developed assay offered specific detection of S. typhimurium against other bacteria in a remarkably wide concentration range of 7.0 × 101 âˆ¼ 7.0 × 109 CFU/mL, along with a detection limit as low as 23 CFU/mL. Real sample analyses of milk and pork demonstrated the excellent reliability and practicability of our assay, providing great potential for food safety analysis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Foodborne Diseases , Humans , Salmonella typhimurium , Concanavalin A , Reproducibility of Results
2.
Acta Histochem ; 125(2): 152000, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36696877

ABSTRACT

Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic suborganelle membranes that physically couple endoplasmic reticulum (ER) and mitochondria to provide a platform for exchange of intracellular molecules and crosstalk between the two organelles. Dysfunctions of mitochondria and ER and imbalance of intracellular homeostasis have been discovered in the research of toxics. Cellular activities such as oxidative stress, ER stress, Ca2+ transport, autophagy, mitochondrial fusion and fission, and apoptosis mediated by MAMs are closely related to the toxicological effects of various toxicants. These cellular activities mediated by MAMs crosstalk with each other. Regulating the structure and function of MAMs can alleviate the damage caused by toxicants to some extent. In this review, we discuss the relationships between MAMs and the mechanisms of toxicological effects, and highlight MAMs as a potential target for protection against toxicants.


Subject(s)
Mitochondria , Mitochondrial Membranes , Mitochondrial Membranes/metabolism , Endoplasmic Reticulum , Endoplasmic Reticulum Stress/physiology , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL