Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
4.
Proc Int World Wide Web Conf ; 2019: 2999-3005, 2019 May.
Article in English | MEDLINE | ID: mdl-31538145

ABSTRACT

Predicting pregnancy has been a fundamental problem in women's health for more than 50 years. Previous datasets have been collected via carefully curated medical studies, but the recent growth of women's health tracking mobile apps offers potential for reaching a much broader population. However, the feasibility of predicting pregnancy from mobile health tracking data is unclear. Here we develop four models - a logistic regression model, and 3 LSTM models - to predict a woman's probability of becoming pregnant using data from a women's health tracking app, Clue by BioWink GmbH. Evaluating our models on a dataset of 79 million logs from 65,276 women with ground truth pregnancy test data, we show that our predicted pregnancy probabilities meaningfully stratify women: women in the top 10% of predicted probabilities have a 89% chance of becoming pregnant over 6 menstrual cycles, as compared to a 27% chance for women in the bottom 10%. We develop a technique for extracting interpretable time trends from our deep learning models, and show these trends are consistent with previous fertility research. Our findings illustrate the potential that women's health tracking data offers for predicting pregnancy on a broader population; we conclude by discussing the steps needed to fulfill this potential.

6.
J Am Chem Soc ; 141(21): 8616-8626, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31062972

ABSTRACT

A systematic study is presented on the physical and photophysical properties of isoelectronic and isostructural Cu, Ag, and Au complexes with a common amide (N-carbazolyl) and two different carbene ligands (i.e., CAAC = (5 R,6 S)-2-(2,6-diisopropylphenyl)-6-isopropyl-3,3,9-trimethyl-2-azaspiro[4.5]decan-2-ylidene, MAC = 1,3-bis(2,6-diisopropylphenyl)-5,5-dimethyl-4-keto-tetrahydropyridylidene). The crystal structures of the (carbene)M(I)(N-carbazolyl) (MCAAC) and (MAC)M(I)(N-carbazolyl) (MMAC) complexes show coplanar carbene and carbzole ligands and C-M-N bond angles of ∼180°. The electrochemical properties and energies for charge transfer (CT) absorption and emission compounds are not significantly affected by the choice of metal ion. All six of the (carbene)M(Cz) complexes examined here display high photoluminescence quantum yields of 0.8-1.0. The compounds have short emission lifetimes (τ = 0.33-2.8 µs) that fall in the order Ag < Au < Cu, with the lifetimes of (carbene)Ag(Cz) roughly a factor of 10 shorter than for (carbene)Cu(Cz) complexes. Detailed temperature-dependent photophysical measurements (5-325 K) were carried out to determine the singlet and triplet emission lifetimes (τfl and τph, respectively) and the energy difference between the singlet and triplet excited state, Δ ES1-T1. The τfl values range between 20 and 85 ns, and the τph values are in the 50-200 µs regime. The emission at room temperature is due exclusively to E-type delayed fluorescence or TADF (i.e., T1→ΔS1→S0+hν ). The emission rate at room temperature is fully governed by Δ ES1-T1, with the silver complexes giving Δ ES1-T1 values of 150-180 cm-1 (18-23 meV), whereas the gold and copper complexes give values of 570-590 cm-1 (70-73 meV).

7.
Faraday Discuss ; 215(0): 141-161, 2019 07 04.
Article in English | MEDLINE | ID: mdl-30942209

ABSTRACT

Inspired by natural photosynthesis, features such as proton relays have been integrated into water reduction catalysts (WRC) for effective production of hydrogen. Research by DuBois et al. showed the crucial influence of these relays, largely in the form of pendant amine functions. In this work catalysts are presented containing innovative diphosphinoamine ligands: [M(ii)Cl2(PNP-C1)], [M(ii)(MeCN)2(PNP-C1)]2+, [M(ii)(PNP-C1)2]2+, and [M(ii)Cl(PNP-C2)]+ (M = Pt2+, Pd2+, Ni2+, Co2+; PNP-C1 = N,N-bis{(di(2-methoxyphenyl)phosphino)methyl}-N-alkylamine, PNP-C2 = N,N-bis{(di(2-methoxyphenyl)phosphino)ethyl}-N-alkylamine and alkyl = Me, Et, iso-Pr, Bz). Synthetic strategies and detailed characterisation are covered, including 1H-, 13C-, and 31P-NMR analysis, mass spectroscopy and single crystal X-ray diffractometry (XRD). The catalytic properties have been explored by changing the pendant amines and auxiliary methoxy coordination sites, as well as enlarging the ligand backbone. Moreover, confirmed by density functional theory (DFT) calculations based on XRD data in vacuo and solvent environment, two very different catalytic cycles are proposed. PNP-C1 shows a classical proton relay, whereas PNP-C2 allows an additional coordination of nitrogen, acting optionally like a pincer. Through new insights into efficiency and stability-increasing influences of proton relays in general, their number per metal centre, an enlarged ligand backbone and the use of solvato instead of halogenido complexes, substantial improvements have been made in catalytic performance over the DuBois et al. catalysts and recently self-made WRCs. The turnover number (TON) related to the single site of cost-efficient nickel WRCs is increased from 11.4 to 637, whereas a corresponding palladium catalyst gives TON as high as 2289.

8.
J Am Chem Soc ; 141(8): 3576-3588, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30768250

ABSTRACT

A series of six luminescent two-coordinate Cu(I) complexes were investigated bearing nonconventional N-heterocyclic carbene ligands, monoamido-aminocarbene (MAC*) and diamidocarbene (DAC*), along with carbazolyl (Cz) as well as mono- and dicyano-substituted Cz derivatives. The emission color can be systematically varied over 270 nm, from violet to red, through proper choice of the acceptor (carbene) and donor (carbazolyl) groups. The compounds exhibit photoluminescent quantum efficiencies up to 100% in fluid solution and polystyrene films with short decay lifetimes (τ ≈ 1 µs). The radiative rate constants for the Cu(I) complexes ( kr = 105-106 s-1) are comparable to state of the art phosphorescent emitters with noble metals such as Ir and Pt. All complexes show strong solvatochromism due to the large dipole moment of the ground states and the transition dipole moment that is in the opposite direction. Temperature-dependent studies of (MAC*)Cu(Cz) reveal a small energy separation between the lowest singlet and triplet states (Δ ES1-T1 = 500 cm-1) and an exceptionally large zero-field splitting (ZFS = 85 cm-1). Organic light-emitting diodes (OLEDs) fabricated with (MAC*)Cu(Cz) as a green emissive dopant have high external quantum efficiencies (EQE = 19.4%) and brightness of 54 000 cd/m2 with modest roll-off at high currents. The complex can also serve as a neat emissive layer to make highly efficient OLEDs (EQE = 16.3%).

9.
Dalton Trans ; 46(3): 745-752, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-27991619

ABSTRACT

The photophysical properties of four, two-coordinate, linear diamidocarbene copper(i) complexes, [(DAC)2Cu][BF4] (1), (DAC)CuOSiPh3 (2), (DAC)CuC6F5 (3) and (DAC)Cu(2,4,6-Me3C6H2) (4) (DAC = 1,3-bis(2,4,6-trimethylphenyl)-5,5-dimethyl-4,6-diketopyrimidinyl-2-ylidene) have been investigated. Complex 1 shows a high photoluminescence quantum efficiency (ΦPL) in both the solid state (ΦPL = 0.85) and in CH2Cl2 solution (ΦPL = 0.65). The emission band of 1, both as a crystalline solid and in solution, is narrow (fwhm = 2300 cm-1) relative to the emission bands of 2 (fwhm = 2900 cm-1) and 3 (fwhm = 3700 cm-1). Complexes 2 and 3 are each brightly luminescent in the solid state (ΦPL = 0.62 and 0.18, respectively), but markedly less so in CH2Cl2 solution (ΦPL = 0.03 and <0.01, respectively). Complex 4 is not emissive in either the solid state or in solution. Phosphorescence of 1 in CH2Cl2 solution shows negligible quenching by oxygen in CH2Cl2 solution. This insensitivity to quenching is attributed to the excited state redox potential being insufficient for electron transfer to oxygen.

SELECTION OF CITATIONS
SEARCH DETAIL
...