Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Adv Drug Deliv Rev ; 198: 114865, 2023 07.
Article in English | MEDLINE | ID: mdl-37182699

ABSTRACT

The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.


Subject(s)
Immunity, Innate , Neoplasms , Humans , Tissue Distribution , Neoplasms/diagnostic imaging , Neoplasms/therapy , Immunotherapy/methods , Molecular Imaging
2.
J Control Release ; 357: 472-483, 2023 05.
Article in English | MEDLINE | ID: mdl-37031740

ABSTRACT

Plant-derived vesicles (PDVs) are attractive for therapeutic applications, including as potential nanocarriers. However, a concern with oral delivery of PDVs is whether they would remain intact in the gastrointestinal tract. We found that 82% of cabbage PDVs were destroyed under conditions mimicking the upper digestive tract. To overcome this limitation, we developed a delivery method whereby lyophilized Eudragit S100-coated cabbage PDVs were packaged into a capsule (Cap-cPDVs). Lyophilization and suspension of PDVs did not have an appreciable impact on PDV structure, number, or therapeutic effect. Additionally, packaging the lyophilized Eudragit S100-coated PDVs into capsules allowed them to pass through the upper gastrointestinal tract for delivery into the colon better than did suspension of PDVs in phosphate-buffered saline. Cap-cPDVs showed robust therapeutic effect in a dextran sulfate sodium-induced colitis mouse model. These findings could have broad implications for the use of PDVs as orally delivered nanocarriers of natural therapeutic plant compounds or other therapeutics.


Subject(s)
Colitis , Mice , Animals , Hydrogen-Ion Concentration , Colitis/chemically induced , Colitis/drug therapy , Polymethacrylic Acids/chemistry , Administration, Oral , Drug Delivery Systems
3.
Adv Drug Deliv Rev ; 192: 114638, 2023 01.
Article in English | MEDLINE | ID: mdl-36462644

ABSTRACT

The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.


Subject(s)
Biomedical Research , Nanoparticles , Humans , Silicon Dioxide , Nanoparticles/chemistry , Nanotechnology/methods , Nanomedicine
5.
Eur J Nucl Med Mol Imaging ; 49(8): 2735-2745, 2022 07.
Article in English | MEDLINE | ID: mdl-35089375

ABSTRACT

PURPOSE: Tumor heterogeneity limits the predictive value of PD-L1 expression and influences the outcomes of the immunohistochemical assay for therapy-induced changes in PD-L1 levels. This study aimed to determine the predictive value of PD-L1 for non-small cell lung carcinoma (NSCLC), thereby developing imaging agents to non-invasively image and examine the effect of the therapeutic response to PD-L1 blockade therapy. METHODS: A cohort of 102 patients with lung cancer was analyzed, and the prognostic significance of PD-L1 expression level was investigated. Recombinant human PD-1 ECD protein (rhPD1) was expressed, purified, and labeled with 64Cu for the evaluation of PD-L1 status in tumors. Mice subcutaneously bearing PD-L1 high-expressing tumor HCC827 and PD-L1 low-expressing tumor A549 were used to determine tracer-target specificity and examine the effect of therapeutic response to PD-L1 blockade therapy. RESULTS: PD-L1 was proved to be a good prognosis marker for NSCLC, and its expression was correlated with the histology of NSCLC. PET imaging revealed high tumor accumulation of 64Cu-NOTA-rhPD1 in HCC827 tumors (9.0 ± 0.5%ID/g), whereas it was 3.2 ± 0.4%ID/g in A549 tumors at 3 h post-injection. The lower tumor uptake (3.1 ± 0.3%ID/g) of 64Cu-labeled denatured rhPD1 in HCC827 tumors at 3 h post-injection (p < 0.001) demonstrated the target specificity of 64Cu-NOTA-rhPD1. Furthermore, PET showed that 64Cu-NOTA-rhPD1 sensitively monitored treatment-related changes in PD-L1 expression, and seemed to be superior to [18F]FDG. CONCLUSION: We identified PD-L1 as a good prognosis marker for surgically resected NSCLC and developed the PET tracer 64Cu-NOTA-rhPD1 with high target specificity for PD-L1.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/metabolism , Mice , Programmed Cell Death 1 Receptor
7.
ACS Omega ; 5(15): 8474-8482, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337408

ABSTRACT

Purpose: Among the treatment options for pancreatic ductal adenocarcinoma (PDAC) are antibodies against the programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway. Positron emission tomography (PET) has been successfully used to assess PD-1/PD-L1 signaling in subcutaneous tumor models, but orthotopic tumor models are increasingly being recognized as a better option to accurately recapitulate human disease. However, when PET radiotracers have high uptake in the liver and spleen, it can obscure signals from the adjacent pancreas, making visualization of the response in orthotopic pancreatic tumors technically challenging. In this study, we first investigated the impact of radioisotope chelators on the biodistribution of 64Cu-labeled anti-PD-1 and anti-PD-L1 antibodies and compared the distribution profiles of anti-PD-1 and anti-PD-L1 antibodies. We then tested the hypothesis that co-injection of unlabeled antibodies reduces uptake of 64Cu-labeled anti-PD-L1 antibodies in the spleen and thereby permits accurate delineation of orthotopic pancreatic tumors in mice. Procedures: We established subcutaneous and orthotopic mouse models of PDAC using KRAS* murine pancreatic cancer cells with a doxycycline-inducible mutation of KRASG12D. We then (1) compared the biodistribution of 64Cu-labeled anti-PD-1 with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA) and 2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) used as the chelators in the orthotopic model; (2) compared the biodistribution of [64Cu]Cu-NOTA-anti-PD-1 and [64Cu]Cu-NOTA-anti-PD-L1 in the orthotopic model; and (3) imaged subcutaneous and orthotopic KRAS* tumors with [64Cu]Cu-NOTA-anti-PD-L1 with and without co-injection of unlabeled anti-PD-L1 as the blocking agent. Results: [64Cu]Cu-NOTA-anti-PD-L1 was a promising imaging probe. By co-injection of an excess of unlabeled anti-PD-L1, background signals of [64Cu]Cu-NOTA-anti-PD-L1 from the spleen were significantly reduced, leading to a clear delineation of orthotopic pancreatic tumors. Conclusions: Co-injection with unlabeled anti-PD-L1 is a useful method for PET imaging of PD-L1 expression in orthotopic pancreatic cancer models.

8.
Nanomedicine ; 25: 102169, 2020 04.
Article in English | MEDLINE | ID: mdl-32059873

ABSTRACT

Generation of durable tumor-specific immune response without isolation and expansion of dendritic cells or T cells ex vivo remains a challenge. In this study, we investigated the impact of nanoparticle-mediated photothermolysis in combination with checkpoint inhibition on the induction of systemic antitumor immunity. Photothermolysis based on near-infrared light-absorbing copper sulfide nanoparticles and 15-ns laser pulses combined with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) increased tumor infiltration by antigen-presenting cells and CD8-positive T lymphocytes in the B16-OVA mouse model. Moreover, combined photothermolysis, polymeric conjugate of the Toll-like receptor 9 agonist CpG, and αPD-1 significantly prolonged mouse survival after re-inoculation of tumor cells at a distant site compared to individual treatments alone in the poorly immunogenic syngeneic ID8-ip1-Luc ovarian tumor model. Thus, photothermolysis is a promising interventional technique that synergizes with Toll-like receptor 9 agonists and immune checkpoint inhibitors to enhance the abscopal effect in tumors.


Subject(s)
Melanoma, Experimental/drug therapy , Photothermal Therapy , Programmed Cell Death 1 Receptor/genetics , Toll-Like Receptor 9/genetics , Animals , Combined Modality Therapy , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunity, Innate/drug effects , Immunotherapy/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Toll-Like Receptor 9/agonists
9.
Bioconjug Chem ; 30(10): 2675-2683, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31560538

ABSTRACT

Exosomes have attracted tremendous attention due to their important role in physiology, pathology, and oncology, as well as promising potential in biomedical applications. Although great efforts have been dedicated to investigating their biological properties and applications as natural cancer drug-delivery systems, the systemic biodistribution of exosomes remains underexplored. In addition, exosome-based drug delivery is inevitably hindered by the robust liver clearance, leading to suboptimal tumor retention and therapeutic efficiency. In this study, we report one of the first examples using in vivo positron emission tomography (PET) for noninvasive monitoring of copper-64 (64Cu)-radiolabeled polyethylene glycol (PEG)-modified exosomes, achieving excellent imaging quality and quantitative measurement of blood residence and tumor retention. PEGylation not only endowed exosomes with a superior pharmacokinetic profile and great accumulation in the tumor versus traditionally reported native exosomes but also reduced premature hepatic sequestration and clearance of exosomes, findings that promise enhanced therapeutic delivery efficacy and safety in future studies. More importantly, this study provides important guidelines about surface engineering, radiochemistry, and molecular imaging in obtaining accurate and quantitative biodistribution information on exosomes, which may benefit future exploration in the realm of exosomes.


Subject(s)
Copper Radioisotopes/chemistry , Exosomes/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Mice , Polyethylene Glycols/pharmacokinetics , Tissue Distribution
10.
Theranostics ; 9(3): 853-867, 2019.
Article in English | MEDLINE | ID: mdl-30809313

ABSTRACT

Rationale: The expression of the chemokine (C-X-C motif) ligand 1 (CXCL1), an inflammatory protein, has been reported to be up-regulated in many human cancers. The mechanisms through which aberrant cellular CXCL1 levels promote specific steps in tumor growth and progression are unknown. Methods: We described the anticancer effects and mechanism of action of HL2401, a monoclonal antibody directed at CXCL1 with in vitro and in vivo data on bladder and prostate cancers. Results: HL2401 inhibited proliferation and invasion of bladder and prostate cells along with disrupting endothelial sprouting in vitro. Furthermore, novel mechanistic investigations revealed that CXCL1 expression stimulated interleukin 6 (IL6) expression and repressed tissue inhibitor of metalloproteinase 4 (TIMP4). Systemic administration of HL2401 in mice bearing bladder and prostate xenograft tumors retarded tumor growth through the inhibition of cellular proliferation and angiogenesis along with an induction of apoptosis. Our findings reveal a previously undocumented relationship between CXCL1, IL6 and TIMP4 in solid tumor biology. Principal conclusions: Taken together, our results argue that CXCL1 plays an important role in sustaining the growth of bladder and prostate tumors via up-regulation of IL6 and down-regulation of TIMP4. Targeting these critical interactions with a CXCL1 monoclonal antibody offers a novel strategy to therapeutically manage bladder and prostate cancers.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Cell Proliferation/drug effects , Chemokine CXCL1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Urinary Bladder Neoplasms/drug therapy , Animals , Disease Models, Animal , Humans , Male , Mice , Neoplasm Transplantation , Prostatic Neoplasms/pathology , Tissue Inhibitor of Metalloproteinases/metabolism , Transplantation, Heterologous , Treatment Outcome , Tumor Cells, Cultured , Urinary Bladder Neoplasms/pathology , Tissue Inhibitor of Metalloproteinase-4
11.
Acta Biomater ; 89: 1-13, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30797106

ABSTRACT

Recently, drug delivery systems based on nanotechnology have received great attention in cancer therapeutics and diagnostics since they can not only improve the treatment efficacy but also reduce the side effects. Among them, mesoporous silica nanoparticles (MSNs) with large surface area, high pore volume, tunable pore size, abundant surface chemistry, and acceptable biocompatibility exhibit unique advantages and are considered as promising candidates for cancer diagnosis and therapy. In this review, we update the recent progress on MSN-based systems for cancer treatment purposes. We also discuss the drug loading mechanism of MSNs, stimuli-responsive drug release, and surface modification strategies for improving biocompatibility, and targeting functionalities. STATEMENT OF SIGNIFICANCE: The development of MSN-based delivery systems that can be used in both diagnosis and treatment of cancer has attracted tremendous interest in the past decade. MSN-based delivery systems can improve therapeutic efficacy and reduce cytotoxicity to normal tissue. To further improve the in vivo properties of MSNs and potential translation to the clinics, it is critical to design MSNs with appropriate surface engineering and desirable cancer targeting. This review is intended to provide the readers a comprehensive background of the vast literature till date on silica-based drug delivery systems, and to inspire further innovations in silica nanomedicine in the future.


Subject(s)
Drug Delivery Systems , Nanoparticles , Neoplasms , Silicon Dioxide , Animals , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Porosity , Silicon Dioxide/chemistry , Silicon Dioxide/therapeutic use
12.
ACS Appl Bio Mater ; 2(8): 3203-3211, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-33907729

ABSTRACT

Although multifunctional inorganic nanoparticles have been extensively explored for effective cancer diagnosis and therapy, their clinical translation has been greatly impeded because of significant uptake in the reticuloendothelial system and concerns about potential toxicity. In this study, we uncovered the thermosensitive biodegradability of CuS nanoparticles, which have classically been considered as stable in bulk state. Polyethylene glycol (PEG)-coated CuS nanoparticles (CuS-PEG) were well preserved at 4 ºC but were rapidly degraded at 37 ºC within 1 week in both in vitro and in vivo tests. Furthermore, real-time multispectral optoacoustic tomography, which is more convenient and accurate than traditional ex vivo analysis, was successfully employed to noninvasively demonstrate the biodegradability of CuS-PEG nanoparticles and dynamically monitor their tumor imaging capacity. The temperature-dependent controllable degradation profile and excellent tumor retention of CuS-PEG nanoparticles endows them with great potential for clinical applications since it ensures that the nanoparticles remain intact during production, transportation, and storage but degrade and clear from the body at physiological temperature after accomplishing sufficient diagnosis and therapeutic operations.

13.
Bioconjug Chem ; 29(12): 4062-4071, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30404438

ABSTRACT

Copper sulfide (CuS) nanoparticles have been considered one of the most clinical relevant nanosystems because of their straightforward chemistry, small particle size, low toxicity, and intrinsic theranostic characteristics. In our previous studies, radioactive [64Cu]CuS nanoparticles were successfully developed to be used as efficient radiotracers for positron emission tomography and for photothermal ablation therapy of cancer cells using near-infrared laser irradiation. However, the major challenge of CuS nanoparticles as a theranostic platform is the lack of a means for effective targeted delivery to the tumor site. To overcome this challenge, we designed and synthesized angiogenesis-targeting [64Cu]CuS nanoparticles, which are coupled with cyclic RGDfK peptide [c(RGDfK)] through polyethylene glycol (PEG) linkers using click chemistry. In assessing their tumor-targeting efficacy, we found that the tumor uptakes of [64Cu]CuS-PEG-c(RGDfK) nanoparticles at 24 h after intravenous injection were significantly greater (8.6% ± 1.4% injected dose/gram of tissue) than those of nontargeted [64Cu]CuS-PEG nanoparticles (4.3% ± 1.2% injected dose/gram of tissue, p < 0.05). Irradiation of tumors in mice administered [64Cu]CuS-PEG-c(RGDfK) nanoparticles induced 98.7% necrotic areas. In contrast, irradiation of tumors in mice administered nontargeted CuS-PEG nanoparticles induced 59% necrotic areas ( p < 0.05). The angiogenesis-targeting [64Cu]CuS nanoparticles may serve as a promising platform for image-guided ablation therapy with high efficacy and minimal side effects in future clinical translation of this novel class of multifunctional nanomaterials.


Subject(s)
Copper Radioisotopes/chemistry , Copper/chemistry , Integrin alphaVbeta3/chemistry , Laser Therapy , Metal Nanoparticles/chemistry , Neoplasms, Experimental/therapy , Positron Emission Tomography Computed Tomography/methods , Animals , HEK293 Cells , Humans , Mice , Peptides, Cyclic/chemistry , Polyethylene Glycols/chemistry
14.
Nano Res ; 11(9): 4890-4904, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30410684

ABSTRACT

Multifunctional yolk/shell-structured hybrid nanomaterials have attracted increasing interest as theranostic nanoplatforms for cancer imaging and therapy. However, because of the lack of suitable surface engineering and tumor targeting strategies, previous research has focused mainly on nanostructure design and synthesis with few successful examples showing active tumor targeting after systemic administration. In this study, we report the general synthetic strategy of chelator-free zirconium-89 (89Zr)-radiolabeled, TRC105 antibody-conjugated, silica-based yolk/shell hybrid nanoparticles for in vivo tumor vasculature targeting. Three types of inorganic nanoparticles with varying morphologies and sizes were selected as the internal cores, which were encapsulated into single hollow mesoporous silica nanoshells to form the yolk/shell-structured hybrid nanoparticles. As a proof-of-concept, we demonstrated successful surface functionalization of the nanoparticles with polyethylene glycol, TRC105 antibody (specific forCD105/endoglin), and 89Zr (a positron-emitting radioisotope), and enhanced in vivo tumor vasculature-targeted positron emission tomography imaging in 4T1murine breast tumor-bearing mice. This strategy could be applied to the synthesis of other types of yolk/shell theranostic nanoparticles for tumor-targeted imaging and drug delivery.

15.
Nanomicro Lett ; 10(4): 65, 2018.
Article in English | MEDLINE | ID: mdl-30393713

ABSTRACT

Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem 64Cu-NOTA-QD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellent imaging capability and more reliable diagnostic outcomes. By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform, as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.

16.
iScience ; 9: 14-26, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30368078

ABSTRACT

Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation. The loaded ZnPc can immediately transform the formed oxygen to generate cytotoxic singlet oxygen upon the same laser irradiation due to the overlapped absorption between PB and ZnPc. Results indicate that the PSP-ZnPc (PSPZP) NCs could realize the photothermally controlled improvement of hypoxic condition in cancer cells and tumor tissues, therefore demonstrating enhanced cancer therapy by the incorporation of PDT and photothermal therapy.

17.
J Biomed Nanotechnol ; 14(5): 900-909, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29883560

ABSTRACT

Manganese-based nanoparticles (NPs) have recently attracted much attention in the field of biomedical imaging due to their impressive enhanced T1 contrast ability. Although the reported manganese-based NPs have exhibited good imaging capabilities as contrast agents, it is still urgent to develop novel multifunctional manganese-based imaging probes for future biomedical imaging, especially PET/MRI probes. Herein, we present chelator-free zirconium-89 (89Zr, t1/2: 78.4 h) labeling of manganese oxide NPs (Mn3O4@PEG) with ∼78% labeling yield and good stability. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies non-invasively assessed the biodistribution patterns of the NPs and the feasibility of in vivo dual-modality imaging and lymph-node mapping. Since Mn3O4 NPs exhibited desirable properties for enhanced T1 imaging and the simplicity of chelator-free radiolabeling, [89Zr]Mn3O4@PEG NPs offer a novel, simple, safe and accurate nanoplatforms for future precise cancer imaging and diagnosis.


Subject(s)
Nanoparticles , Magnetic Resonance Imaging , Manganese Compounds , Oxides , Positron-Emission Tomography , Radioisotopes , Tissue Distribution , Zirconium
18.
Cytokine ; 107: 105-112, 2018 07.
Article in English | MEDLINE | ID: mdl-29452720

ABSTRACT

ALT-803 is a fusion protein complex consisting of an interleukin (IL)-15 superagonist and a dimeric IL-15 receptor alpha sushi domain IgG1 Fc fusion protein. When administered to mice, ALT-803 is capable of inducing natural killer (NK) and CD8+ T cell proliferation and activation, and effectively promoting potent anti-tumor responses. Currently, ALT-803 is in clinical trials for treatment of various solid tumors and hematological malignancies. In the initial phase of these clinical studies, intravenous (iv) injection was used according to the route used in pre-clinical efficacy studies. In order to evaluate the possible advantage of subcutaneous (sc) injection versus iv injection, this study compared the biological activity of the two treatment regimens of ALT-803 in pre-clinical in vivo models. The pharmacokinetics, immune stimulation, and anti-tumor efficacy of iv and sc injection routes of ALT-803 in C57BL/6 mice were compared. The half-life of ALT-803 was 7.5 h for iv versus 7.7 h for sc with the maximal detected serum concentration of ALT-803 to be 3926 ng/ml at 0.5 h time-point following iv injection versus 495 ng/ml at 16 h post sc injection. Biodistribution studies indicated that sc ALT-803, similarly to iv ALT-803 as previously reported, has a greater tissue distribution and longer residence time in lymphoid tissues compared to recombinant IL-15. Notably, ALT-803 when administered either iv or sc induced comparable proliferation and activation of CD8+ T and NK cells and resulted in similar reductions of tumor burden. A toxicity study of mice receiving multiple injections of ALT-803 for 4 weeks by iv or sc routes revealed equivalent immune-related changes. The gradual absorbance into the blood stream and lower maximal blood levels of ALT-803 in sc-injected mice, along with similar anti-tumor efficacy support the administration of ALT-803 by sc injection in patients with various malignancies and infectious diseases.


Subject(s)
Interleukin-15/metabolism , Proteins/administration & dosage , Administration, Intravenous/methods , Animals , Antineoplastic Agents/administration & dosage , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Injections, Subcutaneous/methods , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins , Tissue Distribution , Xenograft Model Antitumor Assays/methods
19.
ACS Appl Mater Interfaces ; 9(44): 38304-38312, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29028311

ABSTRACT

Manganese oxide nanoparticles (Mn3O4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn3O4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 (64Cu, t1/2: 12.7 h). The Mn3O4 conjugated NPs, 64Cu-NOTA-Mn3O4@PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64Cu-NOTA-Mn3O4@PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64Cu-NOTA-Mn3O4@PEG. The specificity of 64Cu-NOTA-Mn3O4@PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn3O4 conjugated NPs exhibited desirable properties for T1 enhanced imaging and low toxicity, the tumor-specific Mn3O4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.


Subject(s)
Nanoparticles , Animals , Cell Line, Tumor , Copper Radioisotopes , Magnetic Resonance Imaging , Manganese Compounds , Mice , Oxides , Positron-Emission Tomography , Rats
20.
Angew Chem Int Ed Engl ; 56(11): 2889-2892, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28170126

ABSTRACT

Macrocyclic chelators have been widely employed in the realm of nanoparticle-based positron emission tomography (PET) imaging, whereas its accuracy remains questionable. Here, we found that 64 Cu can be intrinsically labeled onto nanographene based on interactions between Cu and the π electrons of graphene without the need of chelator conjugation, providing a promising alternative radiolabeling approach that maintains the native in vivo pharmacokinetics of the nanoparticles. Due to abundant π bonds, reduced graphene oxide (RGO) exhibited significantly higher labeling efficiency in comparison with graphene oxide (GO) and exhibited excellent radiostability in vivo. More importantly, nonspecific attachment of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) on nanographene was observed, which revealed that chelator-mediated nanoparticle-based PET imaging has its inherent drawbacks and can possibly lead to erroneous imaging results in vivo.


Subject(s)
Breast Neoplasms/diagnostic imaging , Chelating Agents/chemistry , Copper Radioisotopes/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Positron-Emission Tomography , Animals , Copper/chemistry , Female , Mammary Neoplasms, Experimental/diagnostic imaging , Mice , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL