Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 256(Pt 1): 128370, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000594

ABSTRACT

Infection poses a significant barrier to effective wound repair, leading to increased inflammatory responses that ultimately result in incomplete and prolonged wound healing. To address this challenge, numerous antibacterial ingredients have been incorporated into dressings to inhibit wound infection. Our previous work demonstrated that lysozyme/silver nanoparticles (LYZ/AgNPs) complexes, prepared using an eco-friendly one-step aqueous method, exhibited excellent antibacterial efficacy with favorable biosafety. To further explore its potential application in advancing wound healing, calcium alginate (CA) with good porosity, water absorption, and water retention capacities was formulated with LYZ/AgNPs to prepare composite sponge (CA/LYZ/AgNPs). As expected, in vivo experiments involving full-thickness skin wound and scald wound healing experiments demonstrated that CA-LYZ-AgNPs composite sponges with excellent biocompatibility exhibited remarkable antibacterial activity against gram-positive bacteria, gram-negative bacteria and fungi, and outperformed the wound healing process efficacy of other commercially available AgNPs-loaded wound dressings. In summary, this work introduces a CA/LYZ/AgNPs sponge featuring exceptional antibacterial efficacy and biocompatibility, thus holding promising potential in wound care applications.


Subject(s)
Alginates , Metal Nanoparticles , Alginates/pharmacology , Silver/pharmacology , Muramidase , Anti-Bacterial Agents/pharmacology , Wound Healing , Bandages , Water
2.
Food Funct ; 14(10): 4621-4631, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37158592

ABSTRACT

The abnormal accumulation of fused in sarcoma (FUS) is a pathological hallmark in a proportion of patients with frontotemporal dementia and amyotrophic lateral sclerosis. Therefore, the clearance of FUS aggregates is a possible therapeutic strategy for FUS-associated neurodegenerative diseases. This study reports that curcumin can strongly suppress FUS droplet formation and stress granule aggregation of FUS. Fluorescence spectra and isothermal titration calorimetry showed that curcumin can bind FUS through hydrophobic interactions, thereby reducing the ß-sheet content of FUS. Aggregated FUS sequesters pyruvate kinase, leading to reduced ATP levels. However, results from a metabolomics study revealed that curcumin changed the metabolism pattern and differentially expressed metabolites were enriched in glycolysis. Curcumin attenuated FUS aggregation-mediated sequestration of pyruvate kinase and restored cellular metabolism, consequently increasing ATP levels. These results indicate that curcumin is a potent inhibitor of FUS liquid-liquid phase separation and provide novel insights into the effect of curcumin in ameliorating abnormal metabolism.


Subject(s)
Curcumin , Frontotemporal Dementia , Sarcoma , Humans , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Curcumin/pharmacology , Frontotemporal Dementia/metabolism , Adenosine Triphosphate , Mutation , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
3.
Research (Wash D C) ; 6: 0146, 2023.
Article in English | MEDLINE | ID: mdl-37228640

ABSTRACT

The biological effects of magnetic fields (MFs) have been a controversial issue. Fortunately, in recent years, there has been increasing evidence that MFs do affect biological systems. However, the physical mechanism remains unclear. Here, we show that MFs (16 T) reduce apoptosis in cell lines by inhibiting liquid-liquid phase separation (LLPS) of Tau-441, suggesting that the MF effect on LLPS may be one of the mechanisms for understanding the "mysterious" magnetobiological effects. The LLPS of Tau-441 occurred in the cytoplasm after induction with arsenite. The phase-separated droplets of Tau-441 recruited hexokinase (HK), resulting in a decrease in the amount of free HK in the cytoplasm. In cells, HK and Bax compete to bind to the voltage-dependent anion channel (VDAC I) on the mitochondrial membrane. A decrease in the number of free HK molecules increased the chance of Bax binding to VDAC I, leading to increased Bax-mediated apoptosis. In the presence of a static MF, LLPS was marked inhibited and HK recruitment was reduced, resulting in an increased probability of HK binding to VDAC I and a decreased probability of Bax binding to VDAC I, thus reducing Bax-mediated apoptosis. Our findings revealed a new physical mechanism for understanding magnetobiological effects from the perspective of LLPS. In addition, these results show the potential applications of physical environments, such as MFs in this study, in the treatment of LLPS-related diseases.

4.
Biomacromolecules ; 24(1): 1-18, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36507729

ABSTRACT

Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Humans , Amyloidogenic Proteins , Amyloid beta-Peptides/chemistry , Amyloid/metabolism
5.
Int J Pharm ; 627: 122200, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36155893

ABSTRACT

Staphylococcus aureus (S. aureus) infection, especially its drug-resistant bacterial infection, is a great challenge often faced by clinicians and patients, and it is also one of the most important threats to public health. Finding a safe and effective antibacterial agent is of great significance for the prevention and treatment of S. aureus infection. Lysozyme is known to have antibacterial effects against Gram-positive bacteria including S. aureus. Here, high-quality lysozyme with a purity of more than 99% and an activity of more than 60, 000 U/mg was prepared from egg white, which showed excellent antibacterial activity against three strains of S. aureus, especially against MRSA. Furthermore, an antibacterial cream loaded with lysozyme was prepared and tested in scald wound healing. The lysozyme-loaded cream exhibited the effect of preventing wound infection and promoting wound healing on scalds, and no toxicity was found in animal organs. Overall, lysozyme showed great application potential in the prevention and treatment of infections caused by S. aureus and scalded wound healing. The most remarkable discovery in this work is the unexpectedly powerful inhibitory effect of lysozyme on the drug-resistant bacterial, especially MRSA, which is usually very difficult to deal with using normal antibacterial drugs.


Subject(s)
Burns , Dermatologic Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Staphylococcus aureus , Microbial Sensitivity Tests , Muramidase/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Wound Healing , Dermatologic Agents/pharmacology , Burns/drug therapy
6.
ACS Appl Mater Interfaces ; 13(39): 46391-46405, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34570465

ABSTRACT

Proteins are like miracle machines, playing important roles in living organisms. They perform vital biofunctions by further combining together and/or with other biomacromolecules to form assemblies or condensates such as membraneless organelles. Therefore, studying the self-assembly of biomacromolecules is of fundamental importance. In addition to their biological activities, protein assemblies also exhibit extra properties that enable them to achieve applications beyond their original functions. Herein, this study showed that in the presence of monosaccharides, ethylene glycols, and amino acids, ß-lactoglobulin (ß-LG) can form assemblies with specific structures, which were highly reproducible. The mechanism of the assembly process was studied through multi-scale observations and theoretical analysis, and it was found that the assembling all started from the formation of solute-rich liquid droplets via liquid-liquid phase separation (LLPS). These droplets then combined together to form condensates with elaborate structures, and the condensates finally evolved to form assemblies with various morphologies. Such a mechanism of the assembly is valuable for studying the assembly processes that frequently occur in living organisms. Detailed studies concerning the properties and applications of the obtained ß-LG assemblies showed that the assemblies exhibited significantly better performances than the protein itself in terms of autofluorescence, antioxidant activity, and metal ion absorption, which indicates broad applications of these assemblies in bioimaging, biodetection, biodiagnosis, health maintenance, and pollution treatment. This study revealed that biomacromolecules, especially proteins, can be assembled via LLPS, and some unexpected application potentials could be found beyond their original biological functions.


Subject(s)
Antioxidants/metabolism , Chelating Agents/metabolism , Lactoglobulins/metabolism , Animals , Antioxidants/chemistry , Chelating Agents/chemistry , Copper/chemistry , Hydrogen Bonding , Iron/chemistry , Lactoglobulins/chemistry , Lead/chemistry , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization , RAW 264.7 Cells
7.
Appl Microbiol Biotechnol ; 105(7): 2759-2773, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33683398

ABSTRACT

The self-assembly of biomacromolecules is an extremely important process. It is potentially useful in the fields of life science and materials science. To carry out the study on the self-assembly of proteins, it is necessary to find out the suitable self-assembly conditions, which have always been a challenging task in practice. Inspired by the screening technique in the field of protein crystallization, we proposed using the same screening technique for seeking suitable protein self-assembly conditions. Based on this consideration, we selected 5 proteins (ß-lactoglobulin, hemoglobin, pepsin, lysozyme, α-chymotrypsinogen (II) A) together with 5 screening kits (IndexTM, BML, Morpheus, JCSG, PEG/Ion ScreenTM) to investigate the performance of these crystallization screening techniques in order to discover new optimized conditions of protein self-assembly. The screens were all kept at 293 K for certain days, and were analyzed using optical microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, fluorescence microscope, and atomic absorption spectroscope. The results demonstrated that the method of protein crystallization screening can be successfully applied in the screening of self-assembly conditions. This method is fast, high throughput, and easily implemented in an automated system, with a low protein consumption feature. These results suggested that such strategy can be applied to finding new conditions or forms in routine research of protein self-assembly. KEY POINTS: • Protein crystallization screening method is successfully applied in the screening of self-assembly conditions. • This screening method can be applied on various kinds of proteins and possess a feature of low protein consumption. • This screening method is fast, high throughput, and easily implemented in an automated system.


Subject(s)
Proteins , Crystallization
8.
J Immunol Res ; 2018: 1687097, 2018.
Article in English | MEDLINE | ID: mdl-30155491

ABSTRACT

miR-362 is a recently discovered member of the microRNA family, and it modulates a variety of physical activities and plays an important role in the occurrence and development of many tumors. However, the biological functions of hsa-miR-362-5p in non-small-cell lung carcinoma (NSCLC) are unknown. Transwell assay and colony formation were used to determine the migration, invasion, and proliferation of NSCLC cells in vitro. A subcutaneous tumor model in nude mice was established to detect NSCLC tumor growth in vivo. The direct binding of miR-362 to the 3'UTR of Semaphorin 3A (Sema3A) was confirmed by luciferase reporter assay. In this study, we found that the level of miR-362 was higher in NSCLC tissues than in adjacent normal tissues and that the level of miR-362 expression was also elevated in five NSCLC cell lines (A549, 95-D, H1299, H292, and H460) relative to a human normal lung epithelial cell line (BEAS2B). Furthermore, miR-362 promoted NSCLC cell invasion, migration, and colony formation in vitro and tumor formation in vivo. Next, we identified the miR-362 target gene Sema3A, which is significantly correlated with metastasis. Sema3A expression was increased in normal tissues relative to NSCLC tissues. This result is consistent with the fact that miR-362 expression is negatively correlated with Sema3A expression in clinical tissue samples and indicated that miR-362 can regulate Sema3A expression in NSCLC cells and consequently affect NSCLC invasion, migration, and colony formation. Taken together, these findings on the newly identified miR-362/Sema3A axis elucidate the molecular mechanism of NSCLC invasion and migration and could lead to a potential therapeutic target in NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Neoplasms, Experimental/genetics , Semaphorin-3A/genetics , Animals , Cell Movement , Cell Proliferation , Down-Regulation , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Semaphorin-3A/metabolism
9.
Int J Mol Sci ; 19(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642635

ABSTRACT

Activated hepatic stellate cells (HSCs) release pro-inflammatory and pro-fibrogenic factors. CXC chemokine-ligand-1 (CXCL1) is expressed on HSCs. We previously found that the CD147 is overexpressed in activated HSCs. In this study, we showed an important role of CD147 in promoting liver fibrosis by activating HSCs and upregulating expression of chemokines. Specifically, we found that CD147 specific deletion in HSCs mice alleviated CCl4-induced liver fibrosis and inhibited HSCs activation. Overexpression of CD147 upregulated the secretion of CXCL1. Meanwhile, CXCL1 promoted HSCs activation through autocrine. Treating with PI3K/AKT inhibitor could effectively suppress CD147-induced CXCL1 expression. Taken together, these findings suggest that CD147 regulates CXCL1 release in HSCs by PI3K/AKT signaling. Inhibition of CD147 attenuates CCl4-induced liver fibrosis and inflammation. Therefore, administration of targeting CD147 could be a promising therapeutic strategy in liver fibrosis.


Subject(s)
Basigin/metabolism , Chemokine CXCL1/metabolism , Liver Cirrhosis/metabolism , Animals , Autocrine Communication , Basigin/genetics , Cell Line , Cells, Cultured , Chemokine CXCL1/genetics , Hepatic Stellate Cells/metabolism , Humans , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
10.
J Pathol ; 245(1): 41-52, 2018 05.
Article in English | MEDLINE | ID: mdl-29431199

ABSTRACT

While the importance of protein N-glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N-acetylglucosaminyltransferase V (GnT-V) regulates cancer processes remain largely unknown. In the current study, we report that GnT-V-mediated N-glycosylation of CD147/basigin, a tumor-associated glycoprotein that carries ß1,6-N-acetylglucosamine (ß1,6-GlcNAc) glycans, is upregulated during TGF-ß1-induced epithelial-to-mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of ß1,6-GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin ß1. These results reveal that ß1,6-branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT-V expression and that inhibition of GnT-V-mediated N-glycosylation suppressed PI3K signaling. In summary, ß1,6-branched N-glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Basigin/drug effects , Carcinoma, Hepatocellular/metabolism , Glycosylation/drug effects , N-Acetylglucosaminyltransferases/pharmacology , Transforming Growth Factor beta1/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans , Liver Neoplasms/pathology , Neoplasm Metastasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL