Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.830
Filter
2.
Genomics ; : 110924, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39178996

ABSTRACT

The first dikaryotic genome of Ganoderma cultivar Zizhi S2 (56.76 Mb, 16,681 genes) has been sequenced recently. 98.15% of complete BUSCOs were recovered in this genome assembly and high-confidence annotation rate improved to 91.41%. Collinearity analysis displayed the nuclear genome were 80.2% and 93.84% similar to reference genome of G. sinense at nucleotide and amino acid levels, which presented 8,521 core genes and 880 unique orthologous gene groups. Among that, at least six functional genes (tef1-α, ß-tubulin, rpb2, CaM, Mn-SOD and VeA) and a newly discovered fip gene were highly similar 99.27% ~100% to those in reference genome. And the mt-LSU, mt-SSU and 13 PCGs in their mitogenome were also highly conserved with 99.27%-99.87% and 99.08%-100% identity, respectively. So that, this cultivar Zizhi S2 is confirmed conspecific with Ganoderma sinense (NCBI: txid1077348). The new fip gene (MN635280.1_336bp) existing a novel mutation which can be reflected on the phylogenetic tree and 3-dimensional model topology structure.

3.
Asian J Androl ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119639

ABSTRACT

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.

4.
Nutr J ; 23(1): 91, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138490

ABSTRACT

BACKGROUND: Dietary diversity has been suggested as a potential preventive measure against frailty in older adults, but the effect of changes in dietary diversity on frailty is unclear. This study was conducted to examine the association between the dietary diversity score (DDS) and frailty among older Chinese adults. METHODS: A total of 12,457 adults aged 65 years or older were enrolled from three consecutive and nonoverlapping cohorts from the Chinese Longitudinal Healthy Longevity Survey (the 2002 cohort, the 2005 cohort, and the 2008 cohort). DDS was calculated based on nine predefined food groups, and DDS changes were assessed by comparing scores at baseline and the first follow-up survey. We used 39 self-reported health items to assess frailty. Cox proportional hazard models were performed to examine the association between DDS change patterns and frailty. RESULTS: Participants with low-to-low DDS had the highest frailty incidence (111.1/1000 person-years), while high-to-high DDS had the lowest (41.1/1000 person-years). Compared to the high-to-high group of overall DDS pattern, participants in other DDS change patterns had a higher risk of frailty (HRs ranged from 1.25 to 2.15). Similar associations were observed for plant-based and animal-based DDS. Compared to stable DDS changes, participants with an extreme decline in DDS had an increased risk of frailty, with HRs of 1.38 (1.24, 1.53), 1.31 (1.19, 1.44), and 1.29 (1.16, 1.43) for overall, plant-based, and animal-based DDS, respectively. CONCLUSIONS: Maintaining a lower DDS or having a large reduction in DDS was associated with a higher risk of frailty among Chinese older adults. These findings highlight the importance of improving a diverse diet across old age for preventing frailty in later life.


Subject(s)
Diet , Frailty , Humans , Aged , Female , Male , Frailty/epidemiology , China/epidemiology , Diet/statistics & numerical data , Diet/methods , Cohort Studies , Frail Elderly/statistics & numerical data , Longitudinal Studies , Aged, 80 and over , Asian People/statistics & numerical data , Proportional Hazards Models , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data , East Asian People
5.
Chem Soc Rev ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143899

ABSTRACT

With the increasing demand for energy and the climate challenges caused by the consumption of traditional fuels, there is an urgent need to accelerate the adoption of green and sustainable energy conversion and storage technologies. The integration of flexible thermoelectrics with other various energy conversion technologies plays a crucial role, enabling the conversion of multiple forms of energy such as temperature differentials, solar energy, mechanical force, and humidity into electricity. The development of these technologies lays the foundation for sustainable power solutions and promotes research progress in energy conversion. Given the complexity and rapid development of this field, this review provides a detailed overview of the progress of multifunctional integrated energy conversion and storage technologies based on thermoelectric conversion. The focus is on improving material performance, optimizing the design of integrated device structures, and achieving device flexibility to expand their application scenarios, particularly the integration and multi-functionalization of wearable energy conversion technologies. Additionally, we discuss the current development bottlenecks and future directions to facilitate the continuous advancement of this field.

6.
Int J Biol Macromol ; : 134947, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173803

ABSTRACT

This study aimed to optimize the extraction of Hericium erinaceus polysaccharides (HEP) using ultrasound-assisted enzymatic extraction combined with Plackett-Burman design (PBD) and response surface methodology (RSM). The optimal extraction conditions were identified as: 33 min extraction time, 30:1 liquid to material ratio, 38 °C extraction temperature, 9 g/kg cellulase amount, pH 4, and 20 % ethanol concentration. Under these conditions, the extraction yield of HEP was 5.87 ±â€¯0.16 %, consistent with the predicted results. Additionally, the potential immunomodulatory activity of HEP on RAW 264.7 macrophage was evaluated. The results revealed that HEP improved the immunostimulatory activity of RAW264.7 cells, evident from increased production of IL-6 and TNF-α. These findings suggest that HEP is capable of enhancing the immune activity of RAW 264.7 macrophage.

7.
Anal Chem ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185815

ABSTRACT

Bacterial infections have emerged as a significant contributor to global mortality and morbidity rates. Herein, we introduce a dual fluorescence "turn-on" supramolecular sensor array composed of three assembled complexes (C1-C3), formed from three positively charged fluorophores (A1-A3) and one cucurbit[7]uril (CB[7]). The ability of this three-element array to simultaneously recognize 10 bacterial species within just 30 s was remarkable, boasting an impressive 100% accuracy. Additionally, the array excelled at distinguishing among various bacterial mixtures and enabled the quantitative detection of common bacterial strains. Notably, it has been skillfully applied to differentiate 10 bacterial samples in urine, achieving excellent differentiation and showcasing promising potential for medical diagnostic applications.

8.
Front Plant Sci ; 15: 1433719, 2024.
Article in English | MEDLINE | ID: mdl-39119502

ABSTRACT

Introduction: Planting without mulching can eliminate the residual film pollution caused by the long-term use of plastic film covers, but it will increase soil moisture evaporation and heat loss and severely reduce water use efficiency and cotton productivity in cotton (Gossypium hirsutum L.) fields in arid regions. It is unclear whether the advantages of subsurface drip irrigation and nighttime irrigation can be leveraged to reduce the amount of irrigation applied in fields, improve the soil and leaf hydrothermal environments, and increase the synchronicity of yield and water use efficiency (WUE). Methods: Therefore, in a two-year field experiment (2019-2020), cotton was grown under different irrigation treatments (I5, 3753 m3 ha-1; I4, 3477 m3 ha-1; I3, 3201 m3 ha-1; I2, 2925 m3 ha-1; and I1, 2649 m3 ha-1). The soil volumetric moisture content, soil temperature, leaf relative water content (RWC), daily changes in gas exchange parameters, lint yield, and WUE were evaluated. Results and discussion: The results showed that reducing irrigation can reduce the soil volumetric moisture content (0-40 cm soil layer), increase the soil temperature and soil temperature conductivity, and increase the leaf temperature, intercellular carbon dioxide concentration (Ci), and WUE; however, reducing irrigation is not conducive to increasing the leaf RWC, net photosynthetic rate (Pn), stomatal conductance (Gs), or transpiration rate (Tr). There was no significant difference in WUE between the I3 and I4 treatments from 8:00 to 20:00, but the lint yield in these treatments increased by 2.8-12.2% compared to that in the I5 treatment, with no significant difference between the I3 and I4 treatments. In addition, a related analysis revealed that the positive effects of the leaf hydrothermal environment on the Pn and soil temperature on the WUE occurs during the same period (10:00-16:00). Overall, an irrigation amount of 3201-3477 m3 ha-1 applied with a subsurface nighttime irrigation system without mulching can enhance the soil moisture content and soil temperature, maintain a high photosynthetic capacity, and increase the lint yield and WUE. These results revealed that the negative impacts of plastic film contamination in arid areas can be alleviated.

9.
Huan Jing Ke Xue ; 45(7): 4052-4062, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022953

ABSTRACT

Microplastics are among the most difficult new pollutants to remove in wastewater treatment plants. In order to explore the occurrence form, size distribution, composition, removal efficiency, migration law, and fate behavior characteristics of microplastic particles in sewage plants, taking a sewage treatment plant in Hohhot as an example, a total of 17 sampling sites were set up. The LAS X software counted the shape, abundance, and size of microplastics and conducted a full-process analysis. The results showed that: fibrous microplastics had the highest abundance and widest distribution and were the main form of existence, accounting for 61.8% of the total abundance; the size of microplastics ranged mainly between 0 and 1.00 mm, and among the four sizes, the abundance of microplastics 0.25 to 0.50 mm in China was the highest, accounting for 32.9%. Among the eight types of plastic components detected, polyester substances (PET, PBT), cellulose, and polypropylene (PP) were the main components, accounting for 25%, 21%, and 17%, respectively. The influent abundance of the sewage plant was (73 ±5) n·L-1, the effluent abundance was (14 ±2) n·L-1, and the overall removal rate was (80.8 ±12.1)%. Among the three treatment stages of the sewage plant, only the primary treatment played a role in removal, and the abundance of microplastics surged in the secondary treatment. Different structures playing a major role in the removal of microplastics were fine grids (49.2 ±7.4)% and secondary sedimentation tanks (92.4 ±13.9)%. Microplastics mainly existed in the form of fibers, fragments, and films. The proportion of fibers was approximately 70%, and the size of fragments was mainly concentrated between 0.50 and 5.00 mm. Most fragments were in the range of 5.00 mm, accounting for 50%, making them the main form apart from fibrous. The film-like size was mostly concentrated in the range of less than 0.50 mm, accounting for more than 10%. Therefore, improving the removal of small-sized fibrous and film-like microplastics and large-sized fragmented microplastic particles can effectively reduce the pollution risk of microplastics in the environment caused by sewage plant drainage.


Subject(s)
Cities , Microplastics , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Microplastics/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , China , Sewage/chemistry , Plastics , Particle Size , Polypropylenes , Environmental Monitoring
10.
Biomed Environ Sci ; 37(6): 559-562, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988106
11.
World J Gastrointest Oncol ; 16(6): 2673-2682, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994136

ABSTRACT

BACKGROUND: RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described. AIM: To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC. METHODS: We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression. RESULTS: The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors. CONCLUSION: This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.

12.
Technol Health Care ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39058462

ABSTRACT

BACKGROUND: Renal failure is one of the most common chronic complications of diabetes. Simultaneous pancreas-kidney transplantation (SPK) is considered the preferred treatment for individuals with diabetes and chronic renal failure. This procedure has demonstrated efficacy in enhancing the quality of life for patients and minimizing the complications associated with diabetes. OBJECTIVE: In this study, we analyzed the incidence and safety of complications in different thrombosis prevention techniques post simultaneous pancreas-kidney transplantation (SPK). METHODS: Patients who underwent SPK between January 2019 and December 2022 were selectively categorized into two groups: the heparin group and the non-heparin group depending on the utilization of low molecular weight heparin. The occurrence of complications and clinical outcomes were subsequently calculated in each group. RESULTS: In this study, we included a total of 58 recipients who underwent SPK, with 36 in the heparin group and 22 in the non-heparin group. Among the 58 participants, there were 3 cases of pancreatic thrombosis complications, with 2 cases (5.6%) in the heparin group and 1 case (4.6%) in the non-heparin group, and the differences were not statistically significant (P> 0.05). Regarding gastrointestinal bleeding, there were 17 cases out of the total 58 patients, with 14 cases (38.9%) in the heparin group and 3 cases (13.6%) in the non-heparin group, and the difference was statistically significant (P< 0.05). CONCLUSION: After surgery, the use of low molecular weight heparin anticoagulation may increase the likelihood of experiencing gastrointestinal bleeding. Prior to the surgery, a comprehensive evaluation of the coagulation status and medical history of the patient should be performed, enabling stratification of risks involved. Based on this assessment, either low-molecular-weight heparin or aspirin should be selected as a preventive measure against thrombosis.

13.
Front Immunol ; 15: 1431224, 2024.
Article in English | MEDLINE | ID: mdl-39040116

ABSTRACT

Introduction: High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods: In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results: Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion: The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.


Subject(s)
Autophagy , Liver , Metabolome , Oxidative Stress , Transcriptome , Animals , Liver/metabolism , Liver/pathology , Gene Expression Profiling , Alkalies/toxicity , Alkalies/adverse effects , MicroRNAs/genetics , Metabolomics , Fish Diseases/metabolism
14.
Ann Hematol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078437

ABSTRACT

Neutrophil extracellular traps (NETs) represent a response mechanism in which activated neutrophils release DNA-based webs, adorned with histones and neutrophil proteases, to capture and eliminate invasive microorganisms. However, when these neutrophils become excessively activated, much more proteases associated with NETs are liberated into surrounding tissues or bloodstreams, thereby altering the cellular milieu and causing tissue damage. Recent research has revealed that NETs may play significant roles in the emergence and progression of various diseases, spanning from infections, inflammation to autoimmune disorders and cancers. In this review, we delve deeply into the intricate and complex mechanisms that underlie the formation of NETs and their profound interplay with various clinical pathologies. We aim to describe the application perspectives of NETs related proteins in specific disease diagnosis and treatment.

15.
Med ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39084226

ABSTRACT

BACKGROUND: Peripheral T cell lymphomas (PTCLs) are prototypical epigenetic malignancies with invariably poor prognoses. Novel and effective therapeutic strategies are needed to improve clinical outcomes, particularly in relapsed/refractory patients. METHODS: We conducted a multicenter phase 2 study to evaluate the therapeutic efficacy of azacitidine and chidamide, alone or in combination with gemcitabine and oxaliplatin (GemOx), in patients with relapsed/refractory PTCLs (registration number: ChiCTR2000037232). The primary endpoint was the best overall response rate. FINDINGS: As of May 1st, 2024, thirty patients were evaluable for efficacy and toxicity. The best overall response rate was 53.3%, meeting its primary endpoint. Among the patients with angioimmunoblastic T cell lymphoma (AITL; N = 19), a numerically higher response rate was observed, regardless of whether chemotherapy was combined, compared to patients with non-AITL. After a median follow-up of 36.6 months, median progression-free survival and overall survival were 7.1 and 8.7 months, respectively. Patients with AITL who received combination chemotherapy (N = 12) achieved the most promising response rates (overall response rate, 91.7%; complete remission rate, 66.7%) and survival outcomes (median progression-free survival, 17.2 months; median overall survival, 38.8 months). The most common grade 3-4 toxicities were neutropenia (40.0%) and thrombocytopenia (30.0%). CONCLUSIONS: The combination of epigenetic therapy with GemOx was well tolerated and highly effective in patients with relapsed/refractory PTCLs. Patients with AITL, in particular, may benefit more from this combination treatment and should be the focus of future studies. FUNDING: This work was funded by the Natural Science Foundation of Jiangsu Province (BK20232039).

16.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
17.
Front Comput Neurosci ; 18: 1415967, 2024.
Article in English | MEDLINE | ID: mdl-38952709

ABSTRACT

Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.

18.
Alzheimers Dement ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946708

ABSTRACT

INTRODUCTION: The study aimed to investigate the associations of changes in social isolation, loneliness, or both, with cognitive function. METHODS: Data were from 7299 older adults in the Chinese Longitudinal Healthy Longevity Survey. We defined four change patterns (no, incident, transient, and persistent) for social isolation and loneliness, and created nine-category variable to represent the joint changes. Tobit regression models and Cox models were performed. RESULTS: Incident, transient, and persistent social isolation or loneliness may accelerate cognitive decline (p < 0.05). Incident, transient, and persistent social isolation were associated with higher cognitive impairment risk, while only persistent loneliness was associated with higher cognitive impairment risk (p < 0.001). Notably, short-term or persistent social isolation was associated with accelerated cognitive decline and incident cognitive impairment, regardless of different loneliness change status (p < 0.05). DISCUSSION: Short-term or persistent social isolation and persistent loneliness may be a salient risk factor for cognitive decline and cognitive impairment. HIGHLIGHTS: Incident, transient, and persistent social isolation were associated with accelerated cognitive decline and higher cognitive impairment risk. Persistent loneliness was associated with accelerated cognitive decline and higher cognitive impairment risk. Short-term or persistent social isolation with concurrent different loneliness change status accelerated cognitive decline and higher cognitive impairment risk.

19.
Front Pediatr ; 12: 1357093, 2024.
Article in English | MEDLINE | ID: mdl-39035461

ABSTRACT

Background: Childhood and adolescent cancer represent a significant health burden in the United States. Current and precise epidemiological data are crucial to develop effective cancer control plans and ultimately reduce the burden of childhood and adolescent cancer. Methods: We analyzed data obtained from cancer registries in the National Cancer Institute's Surveillance, Epidemiology, and End Results Program. Age-standardized incidence and death rates, assessed using joinpoint analysis, were quantified as annual percentage changes (APC) and average percentage changes (AAPC). Results: The overall cancer incidence rate in 2008-2018 was 187.9 per 1,000,000 persons. Cancer incidence rates demonstrated a sustained upward trend, with an APC of 0.8 from 1975 to 2018. Incidence rates during 2008-2018 remained stable among non-Hispanic Black children but increased among other racial and ethnic groups. Leukemias, central nervous system tumors, and lymphomas were the most common cancer groups for patients aged 0-19 years. Cancer death rates decreased among children [AAPC, -1.3 (95% CI, -1.5 to -1.1)] during 2009-2019, while were stable among adolescents during that period. Conclusions: In this study, we analyzed cancer incidence and mortality rates and trends in children aged 0-19 years in the United States. Our findings revealed an overall increase in cancer incidence rates among children and adolescents, accompanied by a decline in cancer mortality rates over time. These rates and trends varied by age, sex, and particularly race and ethnicity, highlighting the significance of comprehending and addressing disparities and ultimately reducing the disease burden of childhood and adolescent cancer.

20.
Future Microbiol ; 19(13): 1145-1156, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39056165

ABSTRACT

Aim: Understanding molecular mechanisms of Helicobacter pylori (H. pylori)-induced inflammation is important for developing new therapeutic strategies for gastrointestinal diseases.Materials & methods: We designed an H. pylori-neutrophil infection model and explored the effects of H. pylori infection on neutrophils.Results: H. pylori infected neutrophils showed a low level of apoptosis. H. pylori stimulation activated the NACHT/LRR/PYD domain-containing protein 3 (NLRP3)-gasdermin-D (GSDMD) pathway for interleukin (IL)-1ß secretion. However, IL-1ß secretion was not completely dependent on GSDMD, as inhibition of autophagy significantly reduced IL-1ß release, and autophagy-related molecules were significantly upregulated in H. pylori-infected neutrophils.Conclusion: Therefore, H. pylori infection inhibits neutrophils apoptosis and induces IL-1ß secretion through autophagy. These findings may be utilized to formulate therapeutic strategies against H. pylori mediated chronic gastritis.


[Box: see text].


Subject(s)
Apoptosis , Autophagy , Helicobacter Infections , Helicobacter pylori , Inflammation , Interleukin-1beta , Neutrophils , Neutrophils/immunology , Neutrophils/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/immunology , Helicobacter Infections/pathology , Interleukin-1beta/metabolism , Humans , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gastritis/microbiology , Gastritis/pathology , Gastritis/immunology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL