Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Int J Biol Macromol ; 269(Pt 1): 132107, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710246

ABSTRACT

Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.

2.
Biology (Basel) ; 13(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785795

ABSTRACT

Mycobacterium tuberculosis (Mtb) ranks as the most lethal human pathogen, able to fend off repeated attacks by the immune system or medications. PE_PGRS proteins are hallmarks of the pathogenicity of Mtb and contribute to its antigenic diversity, virulence, and persistence during infection. M. smegmatis is a nonpathogenic mycobacterium that naturally lacks PE_PGRS and is used as a model to express Mtb proteins. PE_PGRS has the capability to evade host immune responses and enhance the intracellular survival of M. smegmatis. Despite the intense investigations into PE_PGRS proteins, their role in tuberculosis remains elusive. We engineered the recombinant M. smegmatis strain Ms-PE_PGRS38. The result shows that PE_PGRS38 is expressed in the cell wall of M. smegmatis. PE_PGRS38 contributes to biofilm formation, confers permeability to the cell wall, and shows variable responses to exogenous stresses. PE_PGRS38 downregulated TLR4/NF-κB signaling in RAW264.7 macrophages and lung tissues of infected mice. In addition, PE_PGRS38 decreased NLRP3-dependent IL-1ß release and limited pathogen-mediated inflammasome activity during infection. Moreover, PE_PGRS38 inhibited the apoptosis of RAW264.7 cells by downregulating the expression of apoptotic markers including Bax, cytochrome c, caspase-3, and caspase-9. In a nutshell, our findings demonstrate that PE_PGRS38 is a virulence factor for Mtb that enables recombinant M. smegmatis to survive by resisting and evading the host's immune responses during infection.

3.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637413

ABSTRACT

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Subject(s)
Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Animals , Rats , Axons/metabolism , Axons/pathology , Diabetes Mellitus, Experimental/metabolism , Nerve Growth Factor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Taurine/pharmacology , Taurine/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
4.
J Pediatr Nurs ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38523049

ABSTRACT

PROBLEM: The phenomenon of emergence delirium in pediatric patients undergoing general anesthesia has garnered increasing attention in the academic community. While formal non-pharmaceutical interventions have demonstrated efficacy in mitigating this phenomenon, the diversity of intervention types and their varying degrees of effectiveness necessitate further discussion. A scoping review was conducted to identify and explicate the categorization, content elements, and outcomes measures of non-pharmacological interventions utilized to forestall the onset of emergence delirium in children undergoing general anesthesia. ELIGIBILITY CRITERIA: This review was conducted in accordance with the Arksey and O'Malley's methodology framework and PRISMA-ScR. It encompassed experimental and quasi-experimental studies that involved any non-pharmacological interventions during the perioperative period to prevent emergence delirium in children aged 0 to 18 years undergoing general anesthesia for elective surgery. SAMPLE: Thirty-two articles met the inclusion criteria, of which 29 were randomized controlled trials. The total sample size of the population was 4633. RESULTS: The scoping review revealed 10 non-pharmacological interventions, that included distraction intervention, visual preconditioning, virtual reality, parental participation, maternal voice, light drinking, acupuncture, auditory stimulation, monochromic light and breathing training. Emergence delirium, preoperative anxiety, and postoperative pain were the primary outcomes, and four assessment instruments were employed to measure the extent and incidence of emergence delirium. CONCLUSION: Numerous non-pharmacological interventions have been employed to prevent emergence delirium. Nevertheless, the effectiveness of some interventions is not yet evident. IMPLICATIONS: The utilization of visual preconditioning and distraction interventions appears to be an emerging area of interest.

5.
Front Pharmacol ; 15: 1092580, 2024.
Article in English | MEDLINE | ID: mdl-38318143

ABSTRACT

Introduction: Depression is the leading cause of disability worldwide and has become a health issue of global concern. Based on the "System of Health Accounts 2011" (SHA 2011) for patients with depression, this paper studies the changes in the current curative expenditure (CCE) of outpatient depression in Liaoning Province, China, and provides policy recommendations. Method: A stratified multistage random sample of 56,994 patients with depression included from 1,227 healthcare facilities in Liaoning Province were included. The significance of differences in variables within groups was analyzed by univariate analysis (including descriptive statistics analysis, Mann-Whitney U test and Kruskal-Wallis H test), and factors influencing depression outpatient CCE were analyzed by multiple linear regression analysis and constructing structural equation models (SEM). Results: The CCE of outpatient depression was ranging from CNY 75.57 million to CNY 100.53 million in 2015-2020, with the highest of CNY 100.53 million in 2018, CNY 103.28 million in 2019. Medical expenditures are mainly concentrated in general hospitals and provincial healthcare institutions, accounting for about 90% of all provincial scope expenditures. The multiple regression results show that provincial healthcare institutions, purchase of drug, select medical treatment for depression, general hospitals and urban employees' health insurance are the main influencing factors for depression outpatient CCE. The results of SEM show that insurance status negative impact outpatient expenditure. Conclusion: Health insurance is an important factor in equitable access to healthcare resources for patients, and medication expenditure is the influential factor affecting the high expenditure of outpatient clinics. It is of great importance to reduce the medical burden of patients by increasing the coverage of medical insurance, increasing the proportion of bills that are eligible for reimbursement, and improving the system by guaranteeing the supply of psychotropic medication.

6.
Biochem Biophys Res Commun ; 689: 149217, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37972446

ABSTRACT

The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/pathology , Kallikreins/genetics , Kallikreins/metabolism
7.
Food Res Int ; 172: 113120, 2023 10.
Article in English | MEDLINE | ID: mdl-37689888

ABSTRACT

Natural multicomponent peptides with abundant bioactivity, varied sizes, and tunable interaction potential are available for rational designing novel self-assembled delivery carriers. Herein, we exploited zein-hyaluronic acid nanoparticles (Z-HA NPs) with a predetermined ordered structure as precursor templates to induce the self-assembly of egg white-derived peptides (EWDP) to generate stable spherical architectures for the enhancement of curcumin (Cur). The resulting Z-EWDP-HA NPs encapsulated hydrophobic Cur through robust hydrogen bonding and hydrophobic interactions with high encapsulation efficiency (97.38% at pH 7.0). The NPs presented superior Cur aqueous solubility, redispersibility, and photothermal stability. More importantly, the self-assembled EWDP could exert synergistic antioxidant activity with Cur and enhance the bioaccessibility of Cur. Meanwhile, the favorable biocompatibility and membrane affinity of EWDP further prolonged residence and time-controlled release feature of Cur in the small intestine. Precursor template-induced multicomponent peptides' self-assembly provides an efficient and controllable strategy for co-enhanced bioactivity and self-assembly capacity of peptides, which could dramatically broaden the functionalization of multicomponent peptides hydrolyzed from natural food proteins.


Subject(s)
Curcumin , Biological Availability , Egg White , Hydrogen Bonding , Peptides
9.
J Agric Food Chem ; 71(30): 11304-11319, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37486612

ABSTRACT

Food protein-derived multicomponent peptides (FPDMPs) are a natural blend of numerous peptides with various bioactivities and multiple active sites that can assume several energetically favorable conformations in solutions. The remarkable structural characteristics and functional attributes of FPDMPs make them promising codelivery carriers that can coassemble with different bioactive ingredients to induce multidimensional structures, such as fibrils, nanotubes, and nanospheres, thereby producing specific health benefits. This review offers a prospective analysis of FPDMPs-based self-assembly nanostructures, focusing on the mechanism of formation of self-assembled FPDMPs, the internal and external stimuli affecting peptide self-assembly, and their potential applications. In particular, we introduce the exciting prospect of constructing functional materials through precursor template-induced self-assembly of FPDMPs, which combine the bioactivity and self-assembly capacity of peptides and could dramatically broaden the functional utility of peptide-based materials.


Subject(s)
Nanospheres , Nanostructures , Nanotubes , Peptides/chemistry , Nanostructures/chemistry , Nanotubes/chemistry , Agriculture
10.
Cell Death Dis ; 14(5): 313, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156774

ABSTRACT

Breast cancer is the most common cancer affecting women worldwide. Many genes are involved in the development of breast cancer, including the Kruppel Like Factor 12 (KLF12) gene, which has been implicated in the development and progression of several cancers. However, the comprehensive regulatory network of KLF12 in breast cancer has not yet been fully elucidated. This study examined the role of KLF12 in breast cancer and its associated molecular mechanisms. KLF12 was found to promote the proliferation of breast cancer and inhibit apoptosis in response to genotoxic stress. Subsequent mechanistic studies showed that KLF12 inhibits the activity of the p53/p21 axis, specifically by interacting with p53 and affecting its protein stability via influencing the acetylation and ubiquitination of lysine370/372/373 at the C-terminus of p53. Furthermore, KLF12 disrupted the interaction between p53 and p300, thereby reducing the acetylation of p53 and stability. Meanwhile, KLF12 also inhibited the transcription of p21 independently of p53. These results suggest that KLF12 might have an important role in breast cancer and serve as a potential prognostic marker and therapeutic target.


Subject(s)
Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Breast Neoplasms/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Cell Proliferation/genetics
11.
Sci Total Environ ; 881: 163480, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37068667

ABSTRACT

Microplastics (MPs) are ubiquitous environmental contaminants and cause neurotoxicity in various organisms. However, previous studies that analyzed the effects of MPs mainly focused on virgin polystyrene (V-PS) as representative models of MPs, and the mechanism underlying the neurotoxicity of photoaged polystyrene (P-PS) remains largely unknown. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0.1-100 µg/L) of V-PS and P-PS(10 µm). The results indicated that UV radiation accelerated the aging process and changed physical and chemical properties of PS. Whereas exposure to both V-PS and P-PS at low concentrations (100 µg/L) significantly reduced the locomotor behavior of zebrafish larvae, P-PS caused more severe neurotoxicity compared to V-PS. The activity of antioxidant enzymes (SOD, CAT, and GST) and MDA content were significantly altered in zebrafish exposed to 10-100 µg/L of P-PS. Similarly, exposure to P-PS significantly increased neurotransmitter (5-HT, GABA, DA, and ACh) levels and activity of AChE, ChAT, and ChE. Star plots based on integrated biomarker response (IBR) values showed more incline toward neurotransmitter biomarkers in response to increasing P-PS concentration, and the behavioral parameters negatively correlated with the neurotransmitter biomarkers. Further investigations revealed that the expression of neurotransmission- (e.g., ache, drd3, 5th2c, and gat1) and oxidative stress- (e.g., cat1, sod1, gpx1a, and gstrl) related genes was significantly affected by PS in larval zebrafish. Thus, this study provides new insights on the potential risks of MPs into the environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Zebrafish/metabolism , Plastics , Polystyrenes/toxicity , Larva , Oxidative Stress , Biomarkers , Water Pollutants, Chemical/toxicity
12.
Toxics ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37112609

ABSTRACT

Pharmaceutical plants are an essential source of antibiotics emitted into the aqueous environment. The monitoring of target antibiotics in pharmaceutical plants through various regions is vital to optimize contaminant release. The occurrence, distribution, removal, and ecological risk of 30 kinds of selected antibiotics in 15 pharmaceutical plants in the Pearl River Delta (PRD) were investigated in this study. Lincomycin (LIN) showed the highest concentration (up to 56,258.3 ng/L) in the pharmaceutical plant influents from Zhongshan city. Norfloxacin (NFX) showed a higher detection frequency than other antibiotics. In addition, the spatial distribution of antibiotics in pharmaceutical plants showed significant differences, with higher concentrations of total antibiotics found in pharmaceutical plant influents in Shenzhen City than those of different regions in PRD. The treatment processes adopted by pharmaceutical plants were commonly ineffective in removing antibiotics, with only 26.7% of antibiotics being effectively removed (average removal greater than 70%), while 55.6% of antibiotics had removal rates of below 60%. The anaerobic/anoxic/oxic (AAO)-membrane bioreactor (MBR) combined process exhibited better treatment performance than the single treatment process. Sulfamethoxazole (SMX), ofloxacin (OFL), erythromycin-H2O (ETM-H2O), sulfadiazine (SDZ), sulfamethazine (SMZ), norfloxacin (NFX), and ciprofloxacin (CIP) in pharmaceutical plant effluents posed high or moderate ecological risk and deserve particular attention.

13.
Cell Death Dis ; 14(4): 250, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024472

ABSTRACT

Breast cancer is the most commonly diagnosed cancer, and its global impact is increasing. Its onset and progression are influenced by multiple cues, one of which is the disruption of the internal circadian clock. Cryptochrome 2 (Cry2) genetic dysregulation may lead to the development of some diseases and even tumors. In addition, post-translational modifications can alter the Cry2 function. Here, we aimed to elucidate the post-translational regulations of Cry2 and its role in breast cancer pathogenesis. We identified p300-drived acetylation as a novel Cry2 post-translational modification, which histone deacetylase 6 (HDAC6) could reverse. Furthermore, we found that Cry2 inhibits breast cancer proliferation, but its acetylation impairs this effect. Finally, bioinformatics analysis revealed that genes repressed by Cry2 in breast cancer were mainly enriched in the NF-κB pathway, and acetylation reversed this repression. Collectively, these results indicate a novel Cry2 regulation mechanism and provide a rationale for its role in breast tumorigenesis.


Subject(s)
Breast Neoplasms , Circadian Clocks , Humans , Female , Cryptochromes/genetics , Cryptochromes/metabolism , Breast Neoplasms/pathology , Acetylation , Transcription Factors/metabolism , Circadian Clocks/genetics
14.
Cell Oncol (Dordr) ; 46(3): 717-733, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36732432

ABSTRACT

PURPOSE: Epithelial-to-mesenchymal transition (EMT) is an important cause of high mortality in breast cancer. Twist1 is one of the EMT transcription factors (EMT-TFs) with a noticeably short half-life, which is regulated by proteasome degradation pathways. Recent studies have found that USP13 stabilizes several specific oncogenic proteins. As yet, however, the relationship between Twist1 and USP13 has not been investigated. METHODS: Co-Immunoprecipitation, GST-pulldown, Western blot, qRT-PCR and immunofluorescence assays were used to investigate the role of USP13 in de-ubiquitination of Twist1. Chromatin immunoprecipitation and Luciferase reporter assays were used to investigate the role of Twist1 in inhibiting USP13 reporter transcription. Scratch wound healing, cell migration and invasion assays, and a mouse lung metastases assay were used to investigate the roles of USP13 and Twist1 in promoting breast cancer metastasis. RESULTS: We found that Twist1 can be de-ubiquitinated by USP13. In addition, we found that the protein levels of Twist1 dose-dependently increased with USP13 overexpression, while USP13 knockdown resulted in a decreased expression of endogenous Twist1. We also found that USP13 can directly interact with Twist1 and specifically cleave the K48-linked polyubiquitin chains of Twist1 induced by FBXL14. We found that the effect of USP13 in promoting the migration and invasion capacities of breast cancer cells can at least partly be achieved through its regulation of Twist1, while Twist1 can inhibit the transcriptional activity of USP13. CONCLUSIONS: Our data indicate that an interplay between Twist1 and USP13 can form a negative physiological feedback loop. Our findings show that USP13 may play an essential role in breast cancer metastasis by regulating Twist1 and, as such, provide a potential target for the clinical treatment of breast cancer.


Subject(s)
Lung Neoplasms , Skin Neoplasms , Animals , Mice , Ubiquitination , Lung Neoplasms/secondary , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Melanoma, Cutaneous Malignant
15.
Microbiol Spectr ; 11(1): e0252622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625672

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the pathogenic agent of tuberculosis (TB). Intracellular survival plays a central role in the pathogenesis of Mtb, a process that depends on an array of virulence factors for Mtb to colonize and proliferate within a host. Reactive nitrogen and oxygen species (RNS and ROS) are among the most effective antimycobacterial molecules generated by the host during infection. However, Mtb has evolved a number of proteins and enzymes to detoxify ROS and RNS. Secretory protein Rv1324, as a possible thioredoxin, might also have oxidoreductase activity against ROS and RNS during Mtb infection, and it is a potential virulence factor of Mtb. In this study, we investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. The results showed that the Rv1324 protein had antioxidant activity and increased the survival of M. smegmatis that was exposed to ROS and RNS. In addition, Rv1324 enhanced the colonization ability of M. smegmatis in the lungs of mice. Further, mice infected with M. smegmatis harboring Rv1324 exhibited pathological injury and inflammation in the lung, which was mediated by ferroptosis. In summary, this study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment. IMPORTANCE The intracellular survival of M. tuberculosis (Mtb) plays a crucial role in its pathogenesis, which depends on various Mtb oxidoreductases that are resistant to reactive oxygen and nitrogen species (ROS and RNS) that are generated by the host during Mtb infection. Secretory protein Rv1324 is a potential virulence factor of Mtb and is a possible thioredoxin that has oxidoreductase activity against ROS and RNS during Mtb infection. We investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. It was confirmed that the Rv1324 protein had antioxidant activity and an increased mycobacterial resistance to ROS and RNS. In addition, Rv1324 enhanced mycobacterial persistence and induced pathological injury and inflammation in the lungs of mice by activating ferroptosis. This study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment.


Subject(s)
Ferroptosis , Lung Injury , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Tuberculosis/microbiology , Oxidoreductases/metabolism , Immunologic Factors/pharmacology , Virulence Factors/metabolism , Inflammation , Oxygen/metabolism , Thioredoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
PLoS One ; 18(1): e0279029, 2023.
Article in English | MEDLINE | ID: mdl-36656826

ABSTRACT

The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCß4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Long-Term Potentiation/genetics , Depression , Memory Disorders/chemically induced , Memory Disorders/genetics , Spatial Learning , Computational Biology
17.
Chem Biol Interact ; 369: 110293, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36473502

ABSTRACT

Hexavalent chromium [Cr (VI)] is a proven human carcinogen which is widely used in steel manufacturing and painting. Here, the involvement of high mobility group A2 (HMGA2) in Cr (VI)-mediated glycolysis and oxidative phosphorylation (OXPHOS) was investigated. First, Cr (VI) treatment induced aerobic glycolysis by increasing the expression of GLUT1, HK II, PKM2 and LDHA enzymes, and reduced OXPHOS by decreasing mitochondrial mass, the expression of COX IV and ND1, and increasing Ca2+ content in mitochondria in A549 and HELF cells. And overexpression of HMGA2 induced aerobic glycolysis and decreased OXPHOS. Secondly, using endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyric acid (4-PBA) and knockdown of activating transcription factor 4 (ATF4) gene by siRNA, we demonstrated that ER stress and ATF4 elevation mediated Cr (VI)-induced glycolysis and inhibited OXPHOS. Furthermore, using tunicamycin (Tm), siHMGA2, transfection of HMGA2 and siATF4, we demonstrated that ER stress-enhanced interaction of HMGA2 and ATF4 resulted in Cr (VI)-induced glycolysis and inhibited OXPHOS. Additionally, ChIP assay revealed that HMGA2 protein could directly bind to the promoter sequence of ATF4 gene, which modulated Cr (VI)-induced ATF4 elevation. Finally, in lung tissues of BALB/c mice injected with HMGA2 plasmids, it is verified that HMGA2 involved in regulation of ATF4, glycolysis and OXPHOS in vivo. Combining, our data discovered that ER stress-enhanced the interaction of HMGA2 and ATF4 played an important role in Cr (VI)-mediated glycolysis and OXPHOS. These results imply a root cause for the carcinogenicity of Cr (VI), and could guide development of novel therapeutics for cancers.


Subject(s)
Activating Transcription Factor 4 , Oxidative Phosphorylation , Animals , Mice , Humans , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Mitochondria/metabolism , Lung/metabolism , Glycolysis , Endoplasmic Reticulum Stress/physiology
18.
Environ Health Perspect ; 130(12): 127004, 2022 12.
Article in English | MEDLINE | ID: mdl-36541774

ABSTRACT

BACKGROUND: Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES: This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS: A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO4, CaCO3, Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200-5,000µg/g Ca. The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25(OH)2D3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS: In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO4. In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO4. In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION: Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.


Subject(s)
Arsenic , Cadmium , Animals , Mice , Humans , Biological Availability , Dust , Lead , Minerals , Gluconates , Citrates , RNA, Messenger
19.
J Biochem Mol Toxicol ; 36(11): e23193, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35924427

ABSTRACT

Hexavalent chromium [Cr (VI)] is a well-established carcinogen. Cr (VI)-treated cells are phenotypically characterized by aberrant levels of growth and migration. Curcumin, a polyphenolic compound from the plant turmeric, has been found to possess antiproliferation, anti-inflammation, and antioxidant properties. In this study, the effect of curcumin on Cr (VI)-induced cell survival and migration and the underlying mechanism were investigated. Cell viability assay on A549 and human embryonic lung fibroblast cells showed that curcumin at the concentration of 10 µM could significantly attenuate Cr (VI)-induced viability in both cell lines. Following Western blot assay and metabolomics assays, cotreatment with curcumin and Cr (VI) resulted in the suppression of Cr (VI)-induced glycolysis-, autophagy-, and migration-related proteins. Meanwhile, curcumin increased Cr (VI)-reduced oxidative phosphorylation (OXPHOS)-related proteins, COXIV and ND1. Moreover, curcumin suppressed Cr (VI)-induced mitochondrial dysfunction, mitochondrial mass decrease, and mitochondrial membrane potential loss. Treatment with curcumin for 24 h significantly attenuated pcATG4B-induced autophagy and the subsequent expression of glucose transporter 1, hexokinase II, and pyruvate kinase M2. Wound healing and transwell assay demonstrated that curcumin reduced Cr (VI)-induced cell migration. Taken together, these results showed that curcumin was able to attenuate Cr (VI)-induced cell viability and migration by targeting autophagy-dependent reprogrammed metabolism from OXPHOS to glycolysis.


Subject(s)
Curcumin , Humans , Curcumin/pharmacology , Autophagy , Membrane Potential, Mitochondrial , Mitochondria , Cell Cycle
20.
Int J Mol Sci ; 23(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35408996

ABSTRACT

Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ligases/metabolism , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...