Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(37): e2200796, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35961951

ABSTRACT

The core-void@shell architecture shows great advantages in enhancing cycling stability and high-rate performance of Si-based anodes. However, it is usually synthesized by template methods which are complex and environmentally unfriendly and would lead to low-efficiency charge and mass exchange because of the single-point van der Waals contact between the Si core and the shell. Here, a facile and benign one-step method to synthesize multi-Si-void@SiO2 structure, where abundant void spaces exist between multiple Si cores that are multi-point attached to a SiO2 shell through strong chemical bonding, is reported. The corresponding electrode exhibits highly stable cycling stability and excellent electrochemical performance. After 200 cycles at a current density of 0.1 A g-1 and then another 200 cycles at 1.2 A g-1 , the electrode outputs a specific capacity of 1440 mAh g-1 . Even at 2.0 A g-1 , it outputs a specific capacity as high as 1182 mAh g-1 . Such an anode can match almost all the cathode materials presently used in lithium-ion batteries. These results demonstrate the multi-Si-void@SiO2 as a promising anode to be used in future commercial lithium-ion batteries of high energy density and high power density.

2.
Nanotechnology ; 33(2)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34614484

ABSTRACT

In nanocomposite electrodes, besides the synergistic effect that takes advantage of the merits of each component, phase interfaces between the components would contribute significantly to the overall electrochemical properties. However, the knowledge of such effects is far from being well developed up to now. The present work aims at a mechanistic understanding of the phase interface effect in C@TiO2core-shell nanocomposite anode which is both scientifically and industrially important. Firstly, amorphous C, anatase TiO2and C@anatse-TiO2electrodes are compared. The C@anatase-TiO2shows an obvious higher specific capacity (316.5 mAh g-1at a current density of 37 mA g-1after 100 cycles) and Li-ion diffusion coefficient (4.0 × 10-14cm2s-1) than the amorphous C (178 mAh g-1and 2.9 × 10-15cm2s-1) and anatase TiO2(120 mAh g-1and 1.6 × 10-15cm2s-1) owing to the C/TiO2phase interface effect. Then, C@anatase/rutile-TiO2is obtained by a heat treatment of the C@anatase-TiO2. Due to an anatase-to-rutile phase transformation and diffusion of C along the anatase/rutile phase interface, additional abundant C/TiO2phase interfaces are created. This endows the C@anatase/rutile-TiO2with further boosted specific capacity (409.4 mAh g-1at 37 mA g-1after 100 cycles) and Li-ion diffusion coefficient (3.2 × 10-13cm2s-1), and excellent rate capability (368.6 mAh g-1at 444 mA g-1). These greatly enhanced electrochemical properties explicitly reveal phase interface engineering as a feasible way to boost the electrochemical performance of nanocomposite anodes for Li-ion batteries.

3.
ACS Appl Mater Interfaces ; 13(12): 14752-14758, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33729763

ABSTRACT

Constructing composite electrodes is considered to be a feasible way to realize high-specific-capacity Li-ion batteries. The core-double-shell-structured Si@C@TiO2 would be an ideal design for such batteries, considering that carbon (C) can buffer the volume change and TiO2 can constrain the structural deformation of Si. Although the electrochemical performance of the shells themselves is relatively clear, the complexity of the multishell heterointerface always results in an ambiguous understanding about the influence of the heterointerface on the electrochemical properties of the core material. In this work, a multilayer film model that can simplify and simultaneously expand the area of the heterointerface is used to study the heterointerfacial behavior. First, a multilayer film TiO2/C with different numbers of TiO2/C heterointerfaces is studied. It shows that the electrochemical performance is enhanced apparently by increasing the number of TiO2/C heterointerfaces. On the one hand, the TiO2/C heterointerface exhibits a strong lithium-ion storage capacity. On the other hand, the TiO2/C heterointerface appears to effectively promote the local Li-ion concentration gradient and thus boost the Li-ion transport kinetics. Then, TiO2/C is combined with Si to construct a composite anode Si/C/TiO2. An obvious advantage of TiO2/C over single TiO2 and C is observed. The utilization rate of Si is greatly improved in the first cycle and reaches up to 98% in Si/C/TiO2. The results suggest that the electrochemical performance of Si can be greatly manipulated by the heterointerface between the multishells.

4.
J Phys Chem B ; 110(1): 68-74, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16471501

ABSTRACT

An onion-phase (multilamellar vesicular phase or Lalpha-phase) was prepared from salt-free zero-charged cationic and anionic (catanionic) surfactant mixtures of tetradecyltrimethylammonium hydroxide (TTAOH)/lauric acid (LA)/H2O. The H+ and OH- counterions form water (TTAOH + LA --> TTAL + H2O), leaving the solution salt free. The onion-phase solution has novel properties including low conductivity, low osmotic pressure and unscreened electrostatic repulsions between cationic and anionic surfactants because of the absence of salt. The spherical multilamellar vesicles have an average 250 nm radius as measured by freeze-fracture transmission electron microscopy (FF-TEM) and the maximum interlayer distance, i.e., the thickness of the hydrophobic bilayer and the water layer, was calculated to be around 52 nm by small-angle X-ray scattering (SAXS). Extremely hydrophobic C60 fullerene can be solubilized in this salt-free zero-charged aqueous onion-phase. As a typical result, 0.588 mg.mL(-1) (approximately 0.82 mmol.L(-1)) C60 has been successfully solubilized into a 50 mmol.L(-1) catanionic surfactant onion-phase aqueous solution. The weight ratio of fullerene to TTAL is calculated to be around 1:40. Solubilization of C60 in the salt-free catanionic onion-phase solution was investigated by using different sample preparation routes, and a variety of techniques were used to characterize these vesicular systems with or without encapsulated C60. The onion-phase solution changed color from slightly bluish to yellow or brown after C60 was solubilized. 1H and 13C NMR measurements indicated that the C60 molecules are located in the hydrophobic layers, i.e., in the central positions [omega-CH3 and delta-(CH2)x] of the hydrophobic layers of the TTAL onion-phase. Salt-free zero-charged catanionic vesicular aqueous solutions are good candidates for enhancing the solubility of C60 in aqueous solutions and may broaden the functionality of fullerenes to new potential applications in biology, medicine, and materials. Hopefully, our method can also be extended to solubilize functionalized carbon nanotubes in aqueous solutions.


Subject(s)
Fullerenes/chemistry , Surface-Active Agents/chemistry , Lauric Acids/chemistry , Magnetic Resonance Spectroscopy/methods , Particle Size , Scattering, Radiation , Sensitivity and Specificity , Solubility , Spectrophotometry, Ultraviolet/methods , Surface Properties , Trimethyl Ammonium Compounds/chemistry , Water/chemistry , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...