Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Nano Lett ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789104

ABSTRACT

Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 µA µm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω µm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.

2.
Nat Commun ; 15(1): 4252, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762594

ABSTRACT

Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe2, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe2 is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics.

3.
Adv Mater ; : e2313511, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597395

ABSTRACT

Moiré superlattices, consisting of rotationally aligned 2D atomically thin layers, provide a highly novel platform for the study of correlated quantum phenomena. However, reliable and efficient construction of moiré superlattices is challenging because of difficulties to accurately angle-align small exfoliated 2D layers and the need to shun wet-transfer processes. Here, efficient and precise construction of various moiré superlattices is demonstrated by picking up and stacking large-area 2D mono- or few-layer crystals with predetermined crystal axes, made possible by a gold-template-assisted mechanical exfoliation method. The exfoliated 2D layers are semiconductors, superconductors, or magnets and their high quality is confirmed by photoluminescence and Raman spectra and by electrical transport measurements of fabricated field-effect transistors and Hall devices. Twisted homobilayers with angle-twisting accuracy of ≈0.3°, twisted heterobilayers with sub-degree angle-alignment accuracy, and multilayer superlattices are precisely constructed and characterized by their moiré patterns, interlayer excitons, and second harmonic generation. The present study paves the way for exploring emergent phenomena in moiré superlattices.

4.
Nature ; 628(8008): 515-521, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509374

ABSTRACT

The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.

5.
Nat Commun ; 15(1): 1129, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321042

ABSTRACT

The spin Hall effect (SHE) allows efficient generation of spin polarization or spin current through charge current and plays a crucial role in the development of spintronics. While SHE typically occurs in non-magnetic materials and is time-reversal even, exploring time-reversal-odd (T-odd) SHE, which couples SHE to magnetization in ferromagnetic materials, offers a new charge-spin conversion mechanism with new functionalities. Here, we report the observation of giant T-odd SHE in Fe3GeTe2/MoTe2 van der Waals heterostructure, representing a previously unidentified interfacial magnetic spin Hall effect (interfacial-MSHE). Through rigorous symmetry analysis and theoretical calculations, we attribute the interfacial-MSHE to a symmetry-breaking induced spin current dipole at the vdW interface. Furthermore, we show that this linear effect can be used for implementing multiply-accumulate operations and binary convolutional neural networks with cascaded multi-terminal devices. Our findings uncover an interfacial T-odd charge-spin conversion mechanism with promising potential for energy-efficient in-memory computing.

6.
J Am Chem Soc ; 146(6): 3890-3899, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38294957

ABSTRACT

Topological insulators offer significant potential to revolutionize diverse fields driven by nontrivial manifestations of their topological electronic band structures. However, the realization of superior integration between exotic topological states and superconductivity for practical applications remains a challenge, necessitating a profound understanding of intricate mechanisms. Here, we report experimental observations for a novel superconducting phase in the pressurized second-order topological insulator candidate Ta2Pd3Te5, and the high-pressure phase maintains its original ambient pressure lattice symmetry up to 45 GPa. Our in situ high-pressure synchrotron X-ray diffraction, electrical transport, infrared reflectance, and Raman spectroscopy measurements, in combination with rigorous theoretical calculations, provide compelling evidence for the association between the superconducting behavior and the densified phase. The electronic state change around 20 GPa was found to modify the topology of the Fermi surface directly, which synergistically fosters the emergence of robust superconductivity. In-depth comprehension of the fascinating properties exhibited by the compressed Ta2Pd3Te5 phase is achieved, highlighting the extraordinary potential of topological insulators for exploring and investigating high-performance electronic advanced devices under extreme conditions.

7.
J Phys Condens Matter ; 36(18)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38241749

ABSTRACT

We report on (resonant) x-ray diffraction experiments on the normal state properties of kagome-lattice superconductors KV3Sb5and RbV3Sb5. We have confirmed previous reports indicating that the charge density wave (CDW) phase is characterized by a doubling of the unit cell in all three crystallographic directions. By monitoring the temperature dependence of Bragg peaks associated with the CDW phase, we ascertained that it develops gradually over several degrees, as opposed to CsV3Sb5, where the CDW peak intensity saturates promptly just below the CDW transition temperature. Analysis of symmetry modes indicates that this behavior arises due to lattice distortions linked to the formation of CDWs. These distortions occur abruptly in CsV3Sb5, while they progress more gradually in RbV3Sb5and KV3Sb5. In contrast, the amplitude of the mode leading to the crystallographic symmetry breaking fromP6/mmmtoFmmmappears to develop more gradually in CsV3Sb5as well. Diffraction measurements close to the V K edge and the Sb L1edge show no sensitivity to inversion- or time-symmetry breaking, which are claimed to be associated with the onset of the CDW phase. The azimuthal angle dependence of the resonant diffraction intensity observed at the Sb L1edge is associated with the difference in the population of unoccupied states and the anisotropy of the electron density of certain Sb ions.

8.
J Phys Condens Matter ; 36(15)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38171019

ABSTRACT

The cluster magnet Nb3Cl8consists of Nb3trimmers that form an emergentS= 1/2 two-dimensional triangular layers, which are bonded by weak van der Waals interactions. Recent studies show that its room-temperature electronic state can be well described as a single-band Mott insulator. However, the magnetic ground state is non-magnetic due to a structural transition below about 100 K. Here we show that there exists a thickness threshold below which the structural transition will not happen. For a bulk crystal, a small fraction of the sample maintains the high-temperature structure at low temperatures and such remnant gives rise to linear-temperature dependence of the specific heat at very low temperatures. This is further confirmed by the measurements on ground powder sample orc-axis pressed single crystals, which prohibits the formation of the non-magnetic state. Moreover, the intrinsic magnetic susceptibility also tends to be constant with decreasing temperature. Our results suggest that Nb3Cl8with the high-temperature structure may host a quantum-spin-liquid ground state with spinon Fermi surfaces, which can be achieved by making the thickness of a sample smaller than a certain threshold.

9.
Sci Adv ; 9(44): eadg9819, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37910619

ABSTRACT

Spin-orbit torque (SOT) is a promising strategy to deterministically switch the perpendicular magnetization, but usually requires an in-plane magnetic field for breaking the mirror symmetry, which is not suitable for most advanced industrial applications. Van der Waals (vdW) materials with low crystalline symmetry and topological band structures, e.g., Weyl semimetals (WSMs), potentially serve as an outstanding system that may simultaneously realize field-free switching and high energy efficiency. Yet, the demonstration of these superiorities at room temperature has not been realized. Here, we achieve a field-free switching of perpendicular magnetization by using a layered type II WSM, TaIrTe4, in a TaIrTe4/Ti/CoFeB system at room temperature with the critical switching current density ~2.4 × 106 A cm-2. The field-free switching is ascribed to the out-of-plane SOT allowed by the low crystal symmetry. Our work suggests that using low-symmetry materials to generate SOT is a promising route for the manipulation of perpendicular magnetization at room temperature.

10.
Nat Commun ; 14(1): 7647, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996440

ABSTRACT

The interplay between topology and interaction always plays an important role in condensed matter physics and induces many exotic quantum phases, while rare transition metal layered material (TMLM) has been proved to possess both. Here we report a TMLM Ta2Pd3Te5 has the two-dimensional second-order topology (also a quadrupole topological insulator) with correlated edge states - Luttinger liquid. It is ascribed to the unconventional nature of the mismatch between charge- and atomic- centers induced by a remarkable double-band inversion. This one-dimensional protected edge state preserves the Luttinger liquid behavior with robustness and universality in scale from micro- to macro- size, leading to a significant anisotropic electrical transport through two-dimensional sides of bulk materials. Moreover, the bulk gap can be modulated by the thickness, resulting in an extensive-range phase diagram for Luttinger liquid. These provide an attractive model to study the interaction and quantum phases in correlated topological systems.

11.
Nat Commun ; 14(1): 7185, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938548

ABSTRACT

Condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-energy physics. Here, using angle-resolved photoemission spectroscopy, we provide an example of this by visualizing the electronic structure of a noncentrosymmetric magnetic Weyl semimetal candidate NdAlSi in both the paramagnetic and ferrimagnetic states. We observe surface Fermi arcs and bulk Weyl fermion dispersion as well as the emergence of new Weyl fermions in the ferrimagnetic state. Our results establish NdAlSi as a magnetic Weyl semimetal and provide an experimental observation of ferrimagnetic regulation of Weyl fermions in condensed matter.

12.
ACS Nano ; 17(19): 18905-18913, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37767802

ABSTRACT

Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence, symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here, we report nonlinear magneto-optical second harmonic generation (SHG) studies of nonmagnetic topological materials including bilayer WTe2, monolayer WSe2, and bulk TaAs. The polarization-resolved patterns of optical SHG under a magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials. For materials with 3-fold rotational symmetric lattice structure, the SHG polarization pattern rotates just slightly in a magnetic field, whereas in those with mirror or 2-fold rotational symmetry, the SHG polarization pattern rotates greatly and distorts. These different magneto-SHG characters can be understood by considering the superposition of the magnetic field-induced time-noninvariant nonlinear optical tensor and the crystal-structure-based time-invariant counterpart. The situation is further clarified by scrutinizing the Faraday rotation, whose subtle interplay with crystal symmetry accounts for the diverse behavior of the extrinsic nonlinear Kerr rotation in different materials. Our work illustrates the application of magneto-SHG techniques to directly probe nontrivial topological properties, and underlines the importance of minimizing extrinsic nonlinear Kerr rotation in polarization-resolved magneto-optical studies.

13.
Nat Commun ; 14(1): 4932, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582957

ABSTRACT

The low-temperature thermoelectric performance of Bi-rich n-type Mg3(Bi,Sb)2 was limited by the electron transport scattering at grain boundaries, while removing grain boundaries and bulk crystal growth of Mg-based Zintl phases are challenging due to the volatilities of elemental reactants and their severe corrosions to crucibles at elevated temperatures. Herein, for the first time, we reported a facile growth of coarse-grained Mg3Bi2-xSbx crystals with an average grain size of ~800 µm, leading to a high carrier mobility of 210 cm2 · V-1 · s-1 and a high z of 2.9 × 10-3 K-1 at 300 K. A [Formula: see text]T of 68 K at Th of 300 K, and a power generation efficiency of 5.8% below 450 K have been demonstrated for Mg3Bi1.5Sb0.5- and Mg3Bi1.25Sb0.75-based thermoelectric modules, respectively, which represent the cutting-edge advances in the near-room temperature thermoelectrics. In addition, the developed grain growth approach can be potentially extended to broad Zintl phases and other Mg-based alloys and compounds.

14.
Nat Commun ; 14(1): 3824, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380642

ABSTRACT

The discovery of magnetic order in atomically-thin van der Waals materials has strengthened the alliance between spintronics and two-dimensional materials. An important use of magnetic two-dimensional materials in spintronic devices, which has not yet been demonstrated, would be for coherent spin injection via the spin-pumping effect. Here, we report spin pumping from Cr2Ge2Te6 into Pt or W and detection of the spin current by inverse spin Hall effect. The magnetization dynamics of the hybrid Cr2Ge2Te6/Pt system are measured, and a magnetic damping constant of ~ 4-10 × 10-4 is obtained for thick Cr2Ge2Te6 flakes, a record low for ferromagnetic van der Waals materials. Moreover, a high interface spin transmission efficiency (a spin mixing conductance of 2.4 × 1019/m2) is directly extracted, which is instrumental in delivering spin-related quantities such as spin angular momentum and spin-orbit torque across an interface of the van der Waals system. The low magnetic damping that promotes efficient spin current generation together with high interfacial spin transmission efficiency suggests promising applications for integrating Cr2Ge2Te6 into low-temperature two-dimensional spintronic devices as the source of coherent spin or magnon current.

15.
Nat Commun ; 14(1): 1945, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029104

ABSTRACT

In crystalline materials, electron-phonon coupling (EPC) is a ubiquitous many-body interaction that drives conventional Bardeen-Cooper-Schrieffer superconductivity. Recently, in a new kagome metal CsV3Sb5, superconductivity that possibly intertwines with time-reversal and spatial symmetry-breaking orders is observed. Density functional theory calculations predicted weak EPC strength, λ, supporting an unconventional pairing mechanism in CsV3Sb5. However, experimental determination of λ is still missing, hindering a microscopic understanding of the intertwined ground state of CsV3Sb5. Here, using 7-eV laser-based angle-resolved photoemission spectroscopy and Eliashberg function analysis, we determine an intermediate λ=0.45-0.6 at T = 6 K for both Sb 5p and V 3d electronic bands, which can support a conventional superconducting transition temperature on the same magnitude of experimental value in CsV3Sb5. Remarkably, the EPC on the V 3d-band enhances to λ~0.75 as the superconducting transition temperature elevated to 4.4 K in Cs(V0.93Nb0.07)3Sb5. Our results provide an important clue to understand the pairing mechanism in the kagome superconductor CsV3Sb5.

16.
Nat Commun ; 14(1): 2465, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117203

ABSTRACT

The fabrication of one-dimensional (1D) magnetic systems on solid surfaces, although of high fundamental interest, has yet to be achieved for a crossover between two-dimensional (2D) magnetic layers and their associated 1D spin chain systems. In this study, we report the fabrication of 1D single-unit-cell-width CrCl3 atomic wires and their stacked few-wire arrays on the surface of a van der Waals (vdW) superconductor NbSe2. Scanning tunneling microscopy/spectroscopy and first-principles calculations jointly revealed that the single wire shows an antiferromagnetic large-bandgap semiconducting state in an unexplored structure different from the well-known 2D CrCl3 phase. Competition among the total energies and nanostructure-substrate interfacial interactions of these two phases result in the appearance of the 1D phase. This phase was transformable to the 2D phase either prior to or after the growth for in situ or ex situ manipulations, in which the electronic interactions at the vdW interface play a nontrivial role that could regulate the dimensionality conversion and structural transformation between the 1D-2D CrCl3 phases.

17.
Innovation (Camb) ; 4(2): 100399, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36923023

ABSTRACT

The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topological electronic state, accompanied by an emergent magneto-transport phenomenon, was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6. A giant unconventional anomalous Hall effect (UAHE) is found during the magnetization re-orientation from easy axes to hard ones in magnetic field, with a UAHE peak around the low field of 5 kOe. Under the reasonable spin-canting effect, the folding of the topological anti-crossing bands occurs, generating a strong Berry curvature that accounts for the observed UAHE. Field-dependent STM/S reveals a highly synchronous evolution of electronic density of states, with a dI/dV peak around the same field of 5 kOe, which provides evidence to the folded bands and excited UAHE by external magnetic fields. This finding elucidates the connection between the real-space non-collinear magnetism and the k-space topological electronic state and establishes a novel manner to engineer the magneto-transport behaviors of correlated electrons for future topological spintronics.

18.
Sci Adv ; 8(49): eabq6833, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36490344

ABSTRACT

The building block of in-memory computing with spintronic devices is mainly based on the magnetic tunnel junction with perpendicular interfacial anisotropy (p-MTJ). The resulting asymmetric write and readout operations impose challenges in downscaling and direct cascadability of p-MTJ devices. Here, we propose that a previously unimplemented symmetric write and readout mechanism can be realized in perpendicular-anisotropy spin-orbit (PASO) quantum materials based on Fe3GeTe2 and WTe2. We demonstrate that field-free and deterministic reversal of the perpendicular magnetization can be achieved using unconventional charge-to-z-spin conversion. The resulting magnetic state can be readily probed with its intrinsic inverse process, i.e., z-spin-to-charge conversion. Using the PASO quantum material as a fundamental building block, we implement the functionally complete set of logic-in-memory operations and a more complex nonvolatile half-adder logic function. Our work highlights the potential of PASO quantum materials for the development of scalable energy-efficient and ultrafast spintronic computing.

19.
Phys Rev Lett ; 129(18): 187601, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36374677

ABSTRACT

1T-TiSe_{2} is one of the most studied charge density wave (CDW) systems, not only because of its peculiar properties related to the CDW transition, but also due to its status as a promising candidate of exciton insulator signaled by the proposed plasmon softening at the CDW wave vector. Using high-resolution electron energy loss spectroscopy, we report a systematic study of the temperature-dependent plasmon behaviors of 1T-TiSe_{2}. We unambiguously resolve the plasmon from phonon modes, revealing the existence of Landau damping to the plasmon at finite momentums, which does not support the plasmon softening picture for exciton condensation. Moreover, we discover that the plasmon lifetime at zero momentum responds dramatically to the band gap evolution associated with the CDW transition. The interband transitions near the Fermi energy in the normal phase are demonstrated to serve as a strong damping channel of plasmons, while such a channel in the CDW phase is suppressed due to the CDW gap opening, which results in the dramatic tunability of the plasmon in semimetals or small-gap semiconductors.

20.
Materials (Basel) ; 15(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36363284

ABSTRACT

Recently, the hexagonal phase of ternary transition metal pnictides TT'X (T = Zr, Hf; T' = Ru; X = P, As), which are well-known noncentrosymmetric superconductors, were predicted to host nontrivial bulk topology. In this work, we systematically investigate the electronic responses of ZrRuAs to external pressure. At ambient pressure, ZrRuAs show superconductivity with Tc ~ 7.74 K, while a large upper critical field ~ 13.03 T is obtained for ZrRuAs, which is comparable to the weak-coupling Pauli limit. The resistivity of ZrRuAs exhibits a non-monotonic evolution with increasing pressure. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 7.93 K at 2.1 GPa, followed by a decrease. The nontrivial topology is robust and persists up to the high-pressure regime. Considering both robust superconductivity and intriguing topology in this material, our results could contribute to studies of the interplay between topological electronic states and superconductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...