Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1354, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355652

ABSTRACT

Exploiting thin Li metal anode is essential for high-energy-density battery, but is severely plagued by the poor processability of Li, as well as the uncontrollable Li plating/stripping behaviors and Li/electrolyte interface. Herein, a thickness/capacity-adjustable thin alloy-type Li/LiZn@Cu anode is fabricated for high-energy-density Li metal batteries. The as-formed lithophilic LiZn alloy in Li/LiZn@Cu anode can effectively regulate Li plating/stripping and stabilize the Li/electrolyte interface to deliver the hierarchical Li electrochemistry. Upon charging, the Li/LiZn@Cu anode firstly acts as Li source for homogeneous Li extraction. At the end of charging, the de-alloy of LiZn nanostructures further supplements the Li extraction, actually playing the Li compensation role in battery cycling. While upon discharging, the LiZn alloy forms just at the beginning, thereby regulating the following Li homogeneous deposition. The reversibility of such an interesting process is undoubtedly verified from the electrochemistry and in-situ XRD characterization. This work sheds light on the facile fabrication of practical Li metal anodes and useful Li compensation materials for high-energy-density Li metal batteries.

2.
ACS Nano ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324715

ABSTRACT

The irrational utilization of an anionic electron often accompanies structural degradation with an irreversible cation migration process upon cycling in sodium-layered oxide cathodes. Moreover, the insufficient understanding of the anionic redox involved cation migration makes the design strategies of high energy density electrodes even less effective. Herein, a P3-Na0.67Li0.2Fe0.2Mn0.6O2 (P3-NLFM) cathode is proposed with the in-plane disordered Li distribution after an in-depth remolding of the Li ribbon-ordered P3-Na0.6Li0.2Mn0.8O2 (P3-NLM) layered oxide. The disordered Li sublattice in the transition metal slab of P3-NLFM leads to the dispersed |O2p orbitals, the lowered charge transfer gap, and the suppressed phase transition at high voltages. Then the enhanced Mn-O interaction and electronic stability are disclosed by the crystal orbital Hamilton population (COHP) analysis at high voltage in P3-NLFM. Furthermore, ab initio molecular dynamics (AIMD) simulation suggests the order/disorder of the transition metal layer is highly correlated with the stability of the Li sublattice. The cross-layer migration and loss of Li in P3-NLM are suppressed in P3-NLFM to enable the high reversibility upon cycling. As a result, the P3-NLFM delivers a high capacity of 163 mAh g-1 without oxygen release and an enhanced capacity retention of 81.9% (vs 42.9% in P3-NLM) after 200 cycles, which constitutes a promising approach for sustainable oxygen redox in rechargeable batteries.

3.
Opt Express ; 31(22): 36255-36262, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017780

ABSTRACT

Researchers are interested in the sensor based on Rydberg atoms because of its broad testing frequency range and outstanding sensitivity. However, the discrete frequency detection limits its further employment. We expand the frequency range of microwaves using Rydberg atoms under the Zeeman effect. In such a scheme, the magnetic field is employed as a tool to split and modify adjacent Rydberg level intervals to realize tunable frequency measurement over 100 MHz under 0-31.5 Gauss magnetic field. In this frequency range, the microwave has a linear dynamic variation range of 63 dB, and has achieved a sensitivity of 11.72 µV cm-1Hz-1/2 with the minimum detectable field strength of 17.2 µV/cm.. Compared to the no magnetic field scenario, the sensitivity would not decrease. By theoretical analysis, in a strong magnetic field, the tunable frequency range can be much larger than 100 MHz. The proposed method for achieving tunable frequency measurement provides a crucial tool in radars and communication.

4.
Opt Express ; 31(12): 18931-18938, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381322

ABSTRACT

Current near-field antenna measurement methods are commonly based on metal probes, with the accuracy limited and hard to be optimized due to the drawbacks they suffered, such as large volume, severe metal reflection/interference and complex circuit signal processing in parameter extracting. In this work, a novel method is proposed based on Rydberg atom in the near-field antenna measurement, which can offer a higher accuracy due to its intrinsic character of traceability to electric field. Replacing the metal probe in near-field measurement system by Rydberg atoms contained in a vapor cell (probe), amplitude- and phase- measurements on a 2.389 GHz signal launched out from a standard gain horn antenna are conducted on a near-field plane. They are transformed to far-field pattern and agree well with simulated results and measured results by using a traditional metal probe method. A high precision in longitudinal phase testing with an error below 1.7% can be achieved.

5.
Nat Commun ; 13(1): 7888, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550128

ABSTRACT

The omnipresent Na+/vacancy orderings change substantially with the composition that inevitably actuate the ionic diffusion in rechargeable batteries. Therefore, it may hold the key to the electrode design with high rate capability. Herein, the influence of Na+/vacancy ordering on Na+ mobility is demonstrated firstly through a comparative investigation in P2-Na2/3Ni1/3Mn2/3O2 and P2-Na2/3Ni0.3Mn0.7O2. The large zigzag Na+/vacancy intralayer ordering is found to accelerate Na+ migration in P2-type Na2/3Ni1/3Mn2/3O2. By theoretical simulations, it is revealed that the Na+ ordering enables the P2-type Na2/3Ni1/3Mn2/3O2 with higher diffusivities and lower activation energies of 200 meV with respect to the P3 one. The quantifying diffusional analysis further prove that the higher probability of the concerted Na+ ionic diffusion occurs in P2-type Na2/3Ni1/3Mn2/3O2 due to the appropriate ratio of high energy ordered Na ions (Naf) occupation. As a result, the interplay between the Na+/vacancy ordering and Na+ kinetic is well understood in P2-type layered cathodes.

6.
ACS Nano ; 16(3): 4775-4785, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35235304

ABSTRACT

Atomic interfacial electric fields hold great potential for boosting ionic and charge transfer and accelerating electrochemical reaction kinetics. Here, built-in electric fields within the heterostructure are created by electrostatic assembly of unilamellar titano-niobate/graphene (reduced graphene oxide) nanosheets as building blocks. Scanning Kelvin probe microscopy confirms the existence of built-in electric fields by detecting the unbalanced surface potential of disparate nanosheets in the heterostructure, which facilitates ion and electron transfer, thus enabling an excellent reversible sodium storage capacity of 245 mAh g-1 at 0.05 A g-1. Theoretical analysis also confirms that the electric field can enhance the electric conductivity and facilitate electron transfer at the atomic interface. Moreover, in situ TEM observations confirm the homogeneous intercalation of sodium ions and very small volume expansion of the hybrid materials. As a result, a highly stable lifetime of 3000 cycles is achieved with capacity retention of 98.8%. This work attests the importance of accelerating ionic and charge transfer through atomic interfacial electric field for superior sodium storage.

7.
Nanotechnology ; 31(16): 165502, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-31891920

ABSTRACT

Colloidal quantum dots (CQDs) are very promising nanomaterials for optoelectronics due to their tunable bandgap and quantum confinement effect. All-inorganic CsPbX3 (X = Br, Cl and I) perovskite nanocrystals (NCs) have attracted enormous interests owing to their promising and exciting applications in photovoltaic devices. In this paper, all-solution-processed UV-IR broadband trilayer photodetectors ITO/ZnO/PbS/CsPbBr3/Au and ITO/ZnO/CsPbBr3/PbS/Au with high performance were presented. The role of CsPbBr3 QDs layer as the carriers-extracting layer in the trilayer devices was discussed. As compared with bilayer device ITO/ZnO/PbS/Au, both the dark currents and photocurrents under illumination from trilayer photodetectors are enhanced, but the trilayer photodetector ITO/ZnO(80 nm)/PbS(150 nm)/CsPbBr3(50 nm)/Au showed a maximum specific detectivity (D*) of 8.3 × 1012 Jones with a responsivity (R) of 35 A W-1 under 1.6 mW cm-2 980 nm illumination. However, another trilayer photodetector ITO/ZnO(80 nm)/CsPbBr3(50 nm)/PbS(150 nm)/Au showed a maximum D* of 1.73 × 1012 Jones with a R of 5.31 A W-1 under 6.8 mW cm-2 405 nm illumination. Further, the underlying mechanism for the enhanced performance of trilayer photodetectors was discussed. Thus, this strategy of all-solution-processed heterojunction configuration paves a facile way for broadband photodetectors with high performance.

8.
ACS Appl Mater Interfaces ; 11(27): 24122-24131, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31187622

ABSTRACT

Although the layered P2-type Na0.67Ni0.33Mn0.67O2 materials show high discharge voltage and specific capacity, they suffer from severe structural instabilities and surface reaction upon Na exchange for sodium-ion batteries (SIBs). Therefore, it is quite necessary to reveal the underlying structural evolution mechanism and diffusion kinetics to improve the structural/electrochemical stability for application in SIBs. Here, we synthesize a P2-type Na0.78Al0.05Ni0.33Mn0.60O2 material by a small dose of Al replacing the Mn, aiming at enhancing the structural stability without sacrificing the average discharge voltage and theoretical capacity. The etching X-ray photoelectron spectroscopy and energy-dispersive X-ray mapping/line scan results indicate that the Al doping induces dual effects of the Al2O3 surface coating and the bulk lattice doping, which efficiently suppress the accumulation of structural irreversible changes from P2 to O2, the volume changes, and surface reactions at high voltage. Obvious improvements are further found on the diffusion kinetics of Na ions as well as the decrease of overall voltage polarization. Interestingly, the dual effects of Al doping lead to the significant increase of capacity retention after 50 cycles and improvement of rate capability compared with the undoped counterpart between 2.0 and 4.5 V. Hence, this work sheds new light on stabilizing the P2-Na-Ni-Mn-O materials, which provides a rewarding avenue to develop better SIBs.

9.
Nanoscale ; 11(12): 5188-5196, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30855064

ABSTRACT

Organic-inorganic hybrid perovskite materials with exotic semiconducting properties have become inevitable candidates for next-generation electronic devices. Very recently, a low dimensional nanostructure of the perovskite materials has attracted the scientific community due to its enhanced performance in optoelectronics as compared to its bulk counterparts. Herein, a facile method was developed for the scalable, room-temperature synthesis of CH3NH3PbI3 (MAPbI3) nano/microtubes by direct conversion of lead iodide (PbI2) microtubes through a solution-phase method. At first, the PbI2 microtubes were synthesized by the anti-solvent crystallization process and subsequently converted to CH3NH3PbI3 nano/microtubes by the addition of CH3NH3I (MAI) precursor directly in the solution phase. The corresponding photodetectors (PDs) in the lateral metal-semiconductor-metal (MSM) configuration of the PbI2 microtubes and MAPbI3 nano/microtubes on glass substrates were investigated systematically. Compared to the PbI2 based PDs (557 mA W-1, 3.65 × 1012 Jones, 0.251 s/0.252 s), the MAPbI3 based PDs exhibit higher photoresponsivity, specific detectivity, and faster response time (25 A W-1, 9.9 × 1013 Jones, 49 ms/20 ms) under irradiation with 4.6 µW cm-2 intensity light of the 532 nm laser at a bias of 5 V. The proposed method is a low-temperature process, easy to apply in large scale synthesis, and finds potential applications in optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...