Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(53): 113790-113803, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851268

ABSTRACT

Plastic pollution is a severe threat to the health of ecosystems, and recycling plastics is recognized as a key control strategy. This study used the one-step pyrolysis assisted with KOH activation to recycle the widely used polyethylene terephthalate (PET) plastic as activated carbon (PET-AC) which was subsequently applied to adsorb diclofenac (DCF), a frequently detected emerging contaminant in water, for the first time. It was found that both the pyrolysis temperature and the addition of KOH can effectively regulate the pore sizes and volumes of PET-AC. PET-AC obtained at 700 °C demonstrated a high adsorption capacity of DCF up to 179.42 mg g-1 at 45 °C. The adsorption kinetics was conducted with both static jar and dynamic column tests and analyzed with various models. Thermodynamic results demonstrated that the adsorption of DCF was spontaneous and endothermic. The material also presented an excellent potential to adsorb other pharmaceuticals and personal care products in water. XPS and FTIR analysis indicated that the adsorption might be mainly driven by the physical forces, especially π-π interaction and hydrogen bonding. This study provided a reference for recycling waste plastic as an efficient adsorbent to eliminate organic contaminants from water.


Subject(s)
Charcoal , Water Pollutants, Chemical , Polyethylene Terephthalates , Diclofenac , Adsorption , Pyrolysis , Ecosystem , Kinetics , Water , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 874: 162480, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858211

ABSTRACT

The co-occurrence of microplastics (MPs) and organic contaminants in aquatic environment can complexify their environmental fate via sorption interactions, especially when the properties of MPs can even vary due to the aging effect. Thus, quantitatively clarifying the sorption mechanisms is required to understand their environmental impacts. This study selected popularly occurring carbamazepine (CBZ) and four types of MPs as model systems, including polyethylene, polyvinyl chloride, polyethylene terephthalate and polystyrene in their pristine and aged forms, to investigate the sorption isotherms, kinetics, and desorption. The variation of MPs during the aging process were analyzed with scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It was found that the aging process elevated the sorption capacity and intensified the desorption hysteresis of CBZ on MPs via increasing the surface roughness, decreasing the particle size, and altering the surficial chemistry of all MPs. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was innovatively applied hereby to calculate the interfacial free energies and revealed that the hydrophobic interaction was significantly lessened after aging for all MPs with the slightly enhanced van der Waals interaction. Then the total interfacial free energies were dropped down for all MPs, which resulted in their declined specific sorption capacity. This work reveals the sorption mechanisms of CBZ on pristine and aged MPs with XDLVO and provides a useful reference to study the sorption of other neutral organics onto MPs.

3.
J Hazard Mater ; 425: 127962, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34894513

ABSTRACT

Plastic particles may bring potential threats to the ecosystem. Coagulation, as a widely used method to remove particles, has been rarely studied for plastic particles in the nanometer range. In this work, the coagulation removal of polystyrene nanoplastic particles (PSNPs, 50-1000 nm) was conducted in a model system containing coagulants aluminum chlorohydrate (PAC) and polyacrylamide (PAM). The optimal removal efficiency (98.5%) was observed in the coagulation process at pH= 8.0, 0.4 g·L-1 PAC and 20 mg·L-1 PAM. The inhibition impact of humic acid was also noticed, due to its competitive adsorption with PSNPs onto flocs. The interaction energies between PSNPs and PAC were calculated by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which showed that electrical neutralization resulted in the difference of the remove efficiency in different sizes and coagulant concentrations. The formation of Al-O bond between PSNPs and PAC/PAM flocs promoted the removal of PSNPs. Excessive PAM (> 20 mg·L-1) increased clusters size and solution viscosity, which resulted in the settling of clusters being controlled by buoyancy and the reduced remove efficiency. The findings suggest that the chemical coagulation dominants the removal of NPs, and the coagulation efficiency can be optimized by choosing suitable coagulant and water chemical conditions.


Subject(s)
Water Pollutants, Chemical , Water Purification , Aluminum Hydroxide , Ecosystem , Flocculation , Microplastics , Particle Size , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...