Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Medicine (Baltimore) ; 103(19): e38131, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728449

ABSTRACT

OBJECTIVE: This study aims to investigate the current research trends and focal points in the field of pelvic floor reconstruction for the management of pelvic organ prolapse (POP). METHODS: To achieve this objective, a bibliometric analysis was conducted on relevant literature using the Citespace database. The analysis led to the creation of a knowledge map, offering a comprehensive overview of scientific advancements in this research area. RESULTS: The study included a total of 607 publications, revealing a consistent increase in articles addressing pelvic floor reconstruction for POP treatment. Most articles originated from the United States (317 articles), followed by Chinese scholars (40 articles). However, it is important to note that the overall number of articles remains relatively low. The organization with the highest publication frequency was the Cleveland Clinic in Ohio, where Matthew D. Barber leads the academic group. Barber himself has the highest number of published articles (18 articles), followed by Zhu Lan, a Chinese scholar (10 articles). Key topics with high frequency and mediated centrality include stress urinary incontinence, quality of life, impact, and age. The journal with the largest number of papers from both domestic and international researchers is INT UROGYNECOL J. The study's hotspots mainly focus on the impact of pelvic floor reconstruction on the treatment and quality of life of POP patients. The United States leads in this field, but there is a lack of cooperation between countries, institutions, and authors. Moving forward, cross-institutional, cross-national, and cross-disciplinary exchanges and cooperation should be strengthened to further advance the field of pelvic floor reconstructive surgery for POP research.


Subject(s)
Bibliometrics , Pelvic Floor , Pelvic Organ Prolapse , Pelvic Organ Prolapse/surgery , Humans , Pelvic Floor/surgery , Female , Plastic Surgery Procedures/methods , Plastic Surgery Procedures/statistics & numerical data , Quality of Life
2.
Inflammation ; 47(1): 227-243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777674

ABSTRACT

Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Mice , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Kidney Glomerulus/metabolism , Macrophages/metabolism
3.
Commun Biol ; 6(1): 1041, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833461

ABSTRACT

CDK4/6 are important regulators of cell cycle and their inhibitors have been approved as anti-cancer drugs. Here, we report a STING-dependent anti-tumor immune mechanism responsible for tumor suppression by CDK4/6 blockade. Clinical datasets show that in human tissues, CDK4 and CDK6 are over-expressed and their expressions are negatively correlated with patients' overall survival and T cell infiltration. Deletion of Cdk4 or Cdk6 in tumor cells significantly reduce tumor growth. Mechanistically, we find that Cdk4 or Cdk6 deficiency contributes to an increased level of endogenous DNA damage, which triggers the cGAS-STING signaling pathway to activate type I interferon response. Knockout of Sting is sufficient to reverse and partially reverse the anti-tumor effect of Cdk4 and Cdk6 deficiency respectively. Therefore, our findings suggest that CDK4/6 inhibitors may enhance anti-tumor immunity through the STING-dependent type I interferon response.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Interferon Type I , Neoplasms , Humans , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Immunity , Interferon Type I/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction
4.
Food Funct ; 14(18): 8201-8216, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37551935

ABSTRACT

Activation of adipose tissue thermogenesis is a promising strategy in the treatment of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a predominant dietary flavonoid with multiple pharmacological properties, such as anti-inflammatory and antioxidant activities. In this study, we sought to characterize the role of KPF in adipocyte thermogenesis. We demonstrated that KPF-treated mice were protected from diet-induced obesity, glucose tolerance, and insulin resistance, accompanied by markedly increased energy expenditure, ex vivo oxygen consumption of white fat, and increased expression of proteins related to adaptive thermogenesis. KPF-promoted beige cell formation is a cell-autonomous effect, since the overexpression of cyclin-dependent kinase 6 (CDK6) in preadipocytes partially reversed browning phenotypes observed in KPF-treated cells. Overall, these data implicate that KPF is involved in promoting beige cell formation by suppressing CDK6 protein expression. This study provides evidence that KPF is a promising natural product for obesity treatment by boosting energy expenditure.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Cyclin-Dependent Kinase 6 , Animals , Mice , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/pharmacology , Cyclin-Dependent Kinase 6/therapeutic use , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/pharmacology , Core Binding Factor Alpha 2 Subunit/therapeutic use , Adipose Tissue, Brown/metabolism , Kaempferols/pharmacology , Adipocytes , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects , Signal Transduction , Thermogenesis , Mice, Inbred C57BL , Energy Metabolism
5.
Infect Genet Evol ; 113: 105471, 2023 09.
Article in English | MEDLINE | ID: mdl-37353184

ABSTRACT

Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) has been widely reported and poses a global threat. However, the comprehensive genetic structure of ST11-KL64 hv-CRKP and the possible evolutionary mechanisms from a genetic structure perspective of this high-risk clone remain unclear. Here, a blaKPC-2-blaNDM-1-positive ST11-KL64 hv-CRKP isolate was obtained from a human bloodstream infection (BSI). Whole-genome sequencing and bioinformatics analyses revealed that it contained a fusion plasmid, pKPTCM2-1. pKPTCM2-1 is a conjugative plasmid composed of an oriT-positive pLVPK-like virulence plasmid and a type IV secretion system-produced blaNDM-1-bearing IncX3 plasmid mediated by IS26-based co-integration. This progress generated 8-bp target site duplications (TGAAAACC) on both sides. The fusion plasmid possessed self-transferability and could be transferred to blaKPC-2-harboring ST11-KL64 CRKP to form the ST11-KL64 hv-CRKP clone. The pLVPK-like-positive ST11-KL64 strain exhibited virulence levels similar to those of the typical hypervirulent K. pneumoniae NTUH-2044. The mutation, Tet(A) (A276S), which was believed to lead to tigecycline resistance was observed. Overall, this high-risk clone has emerged as a tremendous threat in fatal BSIs and thus, targeted surveillance is an urgent need to contain the hv-CRKP clones.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Virulence/genetics , Klebsiella pneumoniae/genetics , Biological Evolution , Carbapenem-Resistant Enterobacteriaceae/genetics , beta-Lactamases/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology
6.
J Hazard Mater ; 458: 131878, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37379606

ABSTRACT

To promote the cycle of Fe2+/Fe3+ in co-catalytic Fenton and enhance mass transfer in an external circulation sequencing batch packed bed reactor (ECSPBR), super-hydrophilicity MoS2 sponge (TMS) modified by tungstosilicic acid (TA) was prepared for efficiently degrading sulfamethoxazole (SMX) antibiotics in aqueous solution. The influence of hydrophilicity of co-catalyst on co-catalytic Fenton and the advantages of ECSPBR were systematically studied through comparative research methods. The results showed that the super hydrophilicity increased the contact between Fe2+ and Fe3+ with TMS, then accelerated Fe2+/Fe3+ cycle. The max Fe2+/Fe3+ ratio of TMS co-catalytic Fenton (TMS/Fe2+/H2O2) was 1.7 times that of hydrophobic MoS2 sponge (CMS) co-catalytic Fenton. SMX degradation efficiency could reach over 90% under suitable conditions. The structure of TMS remained unchanged during the process, and the max dissolved concentration of Mo was lower than 0.06 mg/L. Additionally, the catalytic activity of TMS could be restored by a simple re-impregnation. The external circulation of the reactor was conducive to improving the mass transfer and the utilization rate of Fe2+ and H2O2 during the process. This study offered new insights to prepare a recyclable and hydrophilic co-catalyst and develop an efficient co-catalytic Fenton reactor for organic wastewater treatment.

7.
J Hazard Mater ; 458: 131894, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37352777

ABSTRACT

To degrade the antiviral and antimalarial drug chloroquine phosphate (CQP), an oxygen doping MoS2 nanoflower (O-MoS2-230) co-catalyst was prepared by a hydrothermal method to construct an O-MoS2-230 co-catalytic Fenton system (O-MoS2-230/Fenton) without pH adjustment (initial pH 5.4). Remarkable CQP degradation efficiency (99.5 %) could be achieved in 10 min under suitable conditions ([co-catalyst] = 0.2 g L-1, [Fe2+]0 = 70 µM, [H2O2]0 = 0.4 mM) with a reaction rate constant of 0.24 min-1, which was 4.8 times that of MoS2 co-catalytic Fenton system (MoS2/Fenton). Compared to MoS2/Fenton, the system had 1.5 times more Fe2+ (28.4 µM) and showed a 24.0 % increase in H2O2 activation efficiency, reaching 50.0 %. The electron paramagnetic resonance (EPR) determinations and active species trapping experimental data revealed that •OH and 1O2 were responsible for CQP degradation. The combination of experiments and density functional theory (DFT) calculation demonstrates that O doping in MoS2 modifies the surface charge distribution, leading to an increase in its conductivity, thus accelerating the Fe3+/Fe2+ cycle and promoting reactive oxygen species (ROS) generation. Furthermore, O-MoS2-230/Fenton system exhibited excellent stability. This work reveals the degradation mechanism of accelerated Fe3+/Fe2+ cycle and abundant ROS in the O-MoS2-230/Fenton system and provides a promising technology for antibiotic pollutant degradation.

8.
Front Pharmacol ; 14: 1136897, 2023.
Article in English | MEDLINE | ID: mdl-37153808

ABSTRACT

Sanghuangporus Sanghuang is a fungus species. As a traditional Chinese medicine, it is known for antitumor, antioxidant and anti-inflammatory properties. However, the antiaging effect of S. Sanghuang has not been deeply studied. In this study, the effects of S. Sanghuang extract (SSE) supernatants on the changes of nematode indicators were investigated. The results showed that different concentrations of SSE prolonged the lifespans of nematodes and substantially increased these by 26.41%. In addition, accumulations of lipofuscin were also visibly reduced. The treatment using SSE also played a role in increasing stress resistance, decreasing ROS accumulations and obesity, and enhancing the physique. RT-PCR analysis showed that the SSE treatment upregulated the transcription of daf-16, sir-2.1, daf-2, sod-3 and hsp-16.2, increased the expression of these genes in the insulin/IGF-1 signalling pathway and prolonged the lifespans of nematodes. This study reveals the new role of S. Sanghuang in promoting longevity and inhibiting stress and provides a theoretical basis for the application of S. Sanghuang in anti-ageing treatments.

9.
Elife ; 122023 03 01.
Article in English | MEDLINE | ID: mdl-36856089

ABSTRACT

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased (Ki = 4.3 µM), much closer to the EAAT1 value of 0.6 µM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .


Subject(s)
Amino Acids , Glutamine , Animals , Glutamine/metabolism , Glutamic Acid , Binding Sites , Alanine , Excitatory Amino Acid Transporter 1/metabolism , Serine , Minor Histocompatibility Antigens/genetics , Mammals/metabolism
10.
Sci Total Environ ; 858(Pt 1): 159587, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36270354

ABSTRACT

In order to accelerate Fe3+/Fe2+ cycle and boost singlet oxygen (1O2) generation in peroxymonosulfate (PMS) Fenton-like system, a co-catalyst of defect MoS2 was prepared by C doping and C2-MoS2/Fe3+/PMS system was structured. The removal efficiency of sulfadiazine (SDZ) antibiotics was nearly 100 % in 10 min in the system under the appropriate conditions ([co-catalysts] = 0.2 g/L, [PMS] = 0.1 mM, [Fe3+] = 0.4 mM, pH 3.5), and the reaction rate constant was 4.6 times that of Fe3+/PMS system. C doping MoS2 could induce phase transition, yield more sulfur defects, and expedite electron transfer. Besides, exposed Mo4+ sites on C2-MoS2 could significantly enhance the regeneration and stability of Fe2+ and further promote the activation of PMS. ·OH, SO4·-, and 1O2 were responsible for SDZ degradation in the system. Notably, 1O2 generation was efficiently promoted by sulfur defects and CO sites on C2-MoS2, and 1O2 played the main role in SDZ degradation. Therefore, this co-catalytic system exhibited great anti-interference and stability, and organic contaminants could be efficiently and stably degraded in a 14-day long-term experiment. This work provides a new approach for improving the co-catalytic performance of MoS2 for Fe3+ mediated Fenton-like technology, and offers a promising antibiotic pollutant removal strategy.


Subject(s)
Carbon , Molybdenum , Sulfadiazine , Sulfur
11.
J Phys Org Chem ; 35(11)2022 Nov.
Article in English | MEDLINE | ID: mdl-36568026

ABSTRACT

The glutamine transporter ASCT2 is highly overexpressed in cancer cells. Block of glutamine uptake by ASCT2 is a potential strategy to inhibit growth of cancer cells. However, pharmacology of the ASCT2 binding site is not well established. In this work, we report the computational docking to the binding site, and the synthesis of a new class of ASCT2 inhibitors based on the novel L-hydroxyhomoserine scaffold. While these compounds inhibit the ASCT2 leak anion conductance, as expected for competitive inhibitors, they did not block leak conductance in glutamate transporters (EAAT1-3 and EAAT5). They were also ineffective with respect to subtype ASCT1, which has >57% amino acid sequence similarity to ASCT2. Molecular docking studies agree very well with the experimental results and suggest specific polar interactions in the ASCT2 binding site. Our findings add to the repertoire of ASCT2 inhibitors and will aid in further studies of ASCT2 pharmacology.

12.
Ear Nose Throat J ; : 1455613221143357, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36468452

ABSTRACT

Granular cell tumor (GCT) is a rare soft-tissue neoplasm that originates from Schwann cells. Most cases occur in the subcutaneous or submucosal regions, and intramuscular GCT is even more uncommon. Herein, we describe an atypical GCT growing in the sternocleidomastoid muscle. A 41-year-old Chinese man was admitted to our hospital for a right neck mass. In magnetic resonance images, the mass showed higher signal intensity than the adjacent normal muscle on T2-weighted images and intermediate signal intensity on T1-weighted images. Slightly enhanced and higher signal intensity was observed in the peripheral rim on contrast-enhanced fat-sat T1-weighted images, and the "stripe sign" was evident. The tumor was completely resected, and pathological examination indicated an atypical GCT. The patient tolerated the procedure well. This is a rare case report of an intramuscular GCT from diagnosis to treatment. Magnetic resonance imaging might help diagnose such tumors, and we review different magnetic resonance imaging characteristics of intramuscular GCTs at other sites.

13.
Front Genet ; 13: 704988, 2022.
Article in English | MEDLINE | ID: mdl-35664303

ABSTRACT

Background: Cancer metastasis-related chemoresistance and tumour progression are the leading causes of death among CRC patients. Therefore, it is urgent to identify reliable novel biomarkers for predicting the metastasis of CRC. Methods: The gene expression and corresponding clinical data of CRC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate and multivariate analyses were performed to identify prognostic metastasis-related lncRNAs. Nomograms were constructed, and the predictive accuracy of the nomogram model was assessed by ROC curve analysis. Then, the R package "pRRophetic" was used to predict chemotherapeutic response in CRC patients. In addition, the CIBERSORT database was introduced to evaluate tumour infiltrating immune cells between the high-and low-risk groups. The potential roles of SNHG7 and ZEB1-AS1 in CRC cell lines were further confirmed by in vitro experiments. Results: An 8-lncRNA (LINC00261, RP1-170O19.17, CAPN10-AS1, SNHG7, ZEB1-AS1, U47924.27, NIFK-AS1, and LINC00925) signature was constructed for CRC prognosis prediction, which stratified patients into two risk groups. Kaplan-Meier analysis revealed that patients in the higher-risk group had a lower survival probability than those in the lower-risk group [p < 0.001 (TCGA); P = 0.044 (GSE39582); and P = 0.0078 (GSE29621)] The AUCs of 1-, 3-, and 5-year survival were 0.678, 0.669, and 0.72 in TCGA; 0.58, 0.55, and 0.56 in GSE39582; and 0.75, 0.54, and 0.56 in GSE29621, respectively. In addition, the risk score was an independent risk factor for CRC patients. Nomograms were constructed, and the predictive accuracy was assessed by ROC curve analysis. This signature could effectively predict the immune status and chemotherapy response in CRC patients. Moreover, SNHG7 and ZEB1-AS1 depletion significantly suppressed the colony formation, migration, and invasion of CRC cells in vitro. Conclusion: We constructed a signature that could predict the metastasis of CRC and provide certain theoretical guidance for novel therapeutic approaches for CRC.

15.
Cell Biosci ; 12(1): 63, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581593

ABSTRACT

BACKGROUND: Neutralizing antibodies are approved drugs to treat coronavirus disease-2019 (COVID-19) patients, yet mutations in severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants may reduce the antibody neutralizing activity. New monoclonal antibodies (mAbs) and antibody remolding strategies are recalled in the battle with COVID-19 epidemic. RESULTS: We identified multiple mAbs from antibody phage display library made from COVID-19 patients and further characterized the R3P1-E4 clone, which effectively suppressed SARS-CoV-2 infection and rescued the lethal phenotype in mice infected with SARS-CoV-2. Crystal structural analysis not only explained why R3P1-E4 had selectively reduced binding and neutralizing activity to SARS-CoV-2 variants carrying K417 mutations, but also allowed us to engineer mutant antibodies with improved neutralizing activity against these variants. Thus, we screened out R3P1-E4 mAb which inhibits SARS-CoV-2 and related mutations in vitro and in vivo. Antibody engineering improved neutralizing activity of R3P1-E4 against K417 mutations. CONCLUSION: Our studies have outlined a strategy to identify and engineer neutralizing antibodies against SARS-CoV-2 variants.

16.
Cell Cycle ; 21(9): 984-1002, 2022 05.
Article in English | MEDLINE | ID: mdl-35167417

ABSTRACT

Cervical carcinoma is a leading malignant tumor among women worldwide, characterized by the dysregulation of cell cycle. Cyclin-dependent kinase 6 (CDK6) plays important roles in the cell cycle progression, cell differentiation, and tumorigenesis. However, the role of CDK6 in cervical cancer remains controversial. Here, we found that loss of CDK6 in cervical adenocarcinoma HeLa cell line inhibited cell proliferation but induced apoptosis as well as autophagy, accompanied by attenuated expression of mammalian target of rapamycin complex 1 (mTORC1) and hexokinase 2 (HK2), reduced glycolysis, and production of protein, nucleotide, and lipid. Similarly, we showed that CDK6 knockout inhibited the survival of CDK6-high CaSki but not CDK6-low SiHa cervical cancer cells by regulation of glycolysis and autophagy process. Collectively, our studies indicate that CDK6 is a critical regulator of human cervical cancer cells, especially with high CDK6 level, through its ability to regulate cellular apoptosis and metabolism. Thus, inhibition of CDK6 kinase activity could be a powerful therapeutic avenue used to treat cervical cancers.


Subject(s)
Cyclin-Dependent Kinase 6 , Uterine Cervical Neoplasms , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Female , Glycolysis , HeLa Cells , Hexokinase/genetics , Hexokinase/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Uterine Cervical Neoplasms/pathology
17.
Cell Mol Immunol ; 19(4): 516-526, 2022 04.
Article in English | MEDLINE | ID: mdl-34983952

ABSTRACT

BACKGROUND: In 2015, herpes simplex virus 1 (HSV-1)-derived talimogene laherparepvec (T-VEC) was the first oncolytic virus approved by the US Food and Drug Administration as a therapeutic agent for cancer treatment. However, its antitumor application is limited to local treatment of melanoma, and there is a lack of understanding of the mechanisms underlying the regulation of HSV-1 replication in cancer cells and the associated antitumor immunity. We hypothesized that increasing the replication capacity of HSV-1 in tumor cells would enhance the antitumor effect of this virus. METHODS: We systematically identified IFN-stimulated genes induced by HSV-1 by performing functional screens and clarified the mechanism by which BACH1 acts against HSV-1. Then, we tested the effect of BACH1 deficiency on immunogenic cell death induced by HSV-1. Furthermore, we investigated the antitumor effect of BACH1 deficiency on HSV-1 in MCA205 and B16 murine tumor models. RESULTS: We identified eight IFN-stimulated genes (ISGs) controlling HSV-1 replication, among which BTB and CNC homology 1 (BACH1) suppressed HSV-1 replication by inhibiting the transcription of ICP4, ICP27, and UL39. Loss of Bach1 function not only increased HSV-1 proliferation but also promoted HSV-1-induced cell apoptosis, HMGB1 secretion, and calreticulin exposure in tumor cells. More importantly, hemin, an FDA-approved drug known to downregulate BACH1, significantly enhanced HSV-1-mediated antitumor activity with increased T lymphocyte infiltration at the tumor site. CONCLUSIONS: Our studies uncovered a novel antiviral activity of BACH1 and provided a new strategy for improving the clinical efficiency of the oncolytic virus HSV-1.


Subject(s)
Herpesvirus 1, Human , Melanoma , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Immunity , Mice , Oncolytic Viruses/genetics , United States
18.
Front Physiol ; 12: 777050, 2021.
Article in English | MEDLINE | ID: mdl-34867484

ABSTRACT

SLC6A14 (solute carrier family 6 member 14) is an amino acid transporter, driven by Na+ and Cl- co-transport, whose structure, function, and molecular and kinetic mechanism have not been well characterized. Its broad substrate selectivity, including neutral and cationic amino acids, differentiates it from other SLC6 family members, and its proposed involvement in nutrient transport in several cancers suggest that it could become an important drug target. In the present study, we investigated SLC6A14 function and its kinetic mechanism after expression in human embryonic kidney (HEK293) cells, including substrate specificity and voltage dependence under various ionic conditions. We applied rapid solution exchange, voltage jumps, and laser photolysis of caged alanine, allowing sub-millisecond temporal resolution, to study SLC6A14 steady state and pre-steady state kinetics. The results highlight the broad substrate specificity and suggest that extracellular chloride enhances substrate transport but is not required for transport. As in other SLC6 family members, Na+ binding to the substrate-free transporter (or conformational changes associated with it) is electrogenic and is likely rate limiting for transporter turnover. Transient current decaying with a time constant of <1ms is also observed after rapid amino acid application, both in forward transport and homoexchange modes, indicating a slightly electrogenic, but fast and not rate-limiting substrate translocation step. Our results, which are consistent with kinetic modeling, suggest rapid transporter turnover rate and substrate translocation with faster kinetics compared with other SLC6 family members. Together, these results provided novel information on the SLC6A14 transport cycle and mechanism, expanding our understanding of SLC6A14 function.

19.
Cell Mol Immunol ; 18(12): 2660-2672, 2021 12.
Article in English | MEDLINE | ID: mdl-34782761

ABSTRACT

The tumor microenvironment (TME), including infiltrated immune cells, is known to play an important role in tumor growth; however, the mechanisms underlying tumor immunogenicity have not been fully elucidated. Here, we discovered an unexpected role for the transcription factor SIX1 in regulating the tumor immune microenvironment. Based on analyses of patient datasets, we found that SIX1 was upregulated in human tumor tissues and that its expression levels were negatively correlated with immune cell infiltration in the TME and the overall survival rates of cancer patients. Deletion of Six1 in cancer cells significantly reduced tumor growth in an immune-dependent manner with enhanced antitumor immunity in the TME. Mechanistically, SIX1 was required for the expression of multiple collagen genes via the TGFBR2-dependent Smad2/3 activation pathway, and collagen deposition in the TME hampered immune cell infiltration and activation. Thus, our study uncovers a crucial role for SIX1 in modulating tumor immunogenicity and provides proof-of-concept evidence for targeting SIX1 in cancer immunotherapy.


Subject(s)
Homeodomain Proteins , Transforming Growth Factor beta , Cell Line, Tumor , Collagen , Homeodomain Proteins/metabolism , Humans , Signal Transduction , Transforming Growth Factor beta/metabolism
20.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34507995

ABSTRACT

ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.


Subject(s)
Amino Acid Transport System ASC/antagonists & inhibitors , Binding, Competitive , Computational Chemistry , Cryoelectron Microscopy/methods , Glutamine/metabolism , Pharmaceutical Preparations/administration & dosage , Amino Acid Transport System ASC/metabolism , Binding Sites , Drug Design , Humans , Minor Histocompatibility Antigens/metabolism , Molecular Docking Simulation , Pharmaceutical Preparations/chemistry , Protein Binding , Protein Domains , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...